Differential distribution of PDE4D splice variant mRNAs in rat brain suggests association with specific pathways and presynaptical localization.

Synapse

Department of Molecular Genetics, Instituto de Biología Molecular de Barcelona, CID-CSIC, E-08034 Barcelona, Spain.

Published: September 2002

cAMP plays an important role as a second-messenger molecule controlling multiple cellular processes. Its hydrolysis provides an important mechanism by which cAMP levels are regulated. This is performed by a large multigene family of cyclic nucleotide phosphodiesterases (PDEs). Members of the PDE4 enzyme family are selectively inhibited by rolipram. Five different mRNA splice forms for PDE4D have been isolated. Here, we analyzed the regional distribution of the mRNAs coding for the splice variants PDE4D1, PDE4D2, PDE4D3, PDE4D4, and PDE4D5 in the rat brain by in situ hybridization histochemistry using specific radiolabeled oligonucleotides. We found that all five splice variants showed a distinct distribution pattern and, in some cases, in association with specific brain pathways. The most relevant differences were in hippocampal formation, medial habenula, basal ganglia, and area postrema, at both the regional and cellular level. The dorsal and median raphe nuclei exclusively contained PDE4D2 mRNA transcripts, probably located on serotonergic cells. PDE4D1 mRNA was expressed in some white matter cells. PDE4D1 and PDE4D2 mRNA splice forms presented a similar distribution in the area postrema, whereas for PDE4D4 and PDE4D5 the cellular distribution presented a complementary pattern. The differential expression of PDE4D mRNA splice variants in the area postrema is consistent with their possible involvement in emesis control and suggests new molecular targets for a more selective drug design.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.10100DOI Listing

Publication Analysis

Top Keywords

mrna splice
12
splice variants
12
area postrema
12
rat brain
8
association specific
8
splice forms
8
pde4d1 pde4d2
8
pde4d4 pde4d5
8
pde4d2 mrna
8
cells pde4d1
8

Similar Publications

Novel variants of FSIP2 and SPEF2 cause varying degrees of spermatozoa damage in MMAF patients and favorable ART outcomes.

J Assist Reprod Genet

January 2025

NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.

Purpose: This study identified novel variants of the FSIP2 and SPEF2 genes in multiple morphological abnormalities of the sperm flagella (MMAF) patients and to investigate the potential effect of variations on male infertility and assisted reproductive outcomes.

Methods: Whole-exome sequencing was performed in 106 Chinese MMAF patients. The discovered variants were evaluated in silico and confirmed by Sanger sequencing.

View Article and Find Full Text PDF

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

Background: Neurofibrillary tangles (NFT), consisting of hyperphosphorylated tau aggregates, are one of the major pathological hallmarks of Alzheimer's disease (AD). The burden of NFTs correlates with cognitive decline, and in vivo detection of NFT may help predict the clinical progression of AD. Mass spectrometry-based proteomic analysis of brain regions affected by NFTs holds the potential to unveil the molecular mechanisms underlying tau pathogenesis and uncover novel diagnostic/prognostic biomarkers and therapeutic targets.

View Article and Find Full Text PDF

Background: Circular RNA represents a distinctive form of noncoding RNA resulting from back-splicing of exons and introns in mRNA. CircRNA has been shown play important roles in neurological diseases, such as Alzheimer's disease (AD). Some recent studies also have demonstrated circRNA is enriched in the mammal brain and differentially altered during AD.

View Article and Find Full Text PDF

Background: Circadian rhythm disorder is not only a characteristic of neurodegenerative diseases but may participate in driving the pathological development in early stages of these diseases. Transactive response DNA-binding protein of 43 kDa (TDP-43) knockdown and its pathological aggregation are associated with severe neurodegenerative diseases such as amyotrophic lateral sclerosis.

Methods: C57BL/6 mice were sleep deprived and sarcrificed at ZT0, ZT6, ZT12, and ZT18 and detected by Western blots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!