Titanium is widely used in dental implants due to its suitable physical properties and its good biocompatibility. However, it is integrated into bone only passively, and the resulting fixation in the bone, which is necessary for the function, is mainly mechanical in nature. With the objective of increasing the chemical interaction between the implant and the bone tissue, several phosphonic acids were synthesized and grafted onto titanium disks. Here we report on the proliferation, differentiation, and protein production of rat osteoblastic cells (CRP10/30) on phosphonic-acid-modified titanium surfaces studied in vitro. No statistical differences were found in osteoblast proliferation among the phosphonic-acid-modified titanium, unmodified titanium, and tissue culture plastic (used as a positive control), indicating that the phosphonic acids used were not cytotoxic to the osteoblasts used. For all surfaces (modified or not), the alkaline phosphatase activity was at least as good as it was on tissue culture plastic. However, the total amount of protein, and especially the collagen type I synthesis, was sensitive to surface modification. On titanium modified with ethane-1,1,2-triphosphonic acid, the total amount of synthesized protein was significantly higher than it was on unmodified titanium surfaces. A significant increase (up to 16%) of collagen type I production was observed on titanium surfaces modified with this acid or with methylenediphosphonic acid compared to unmodified titanium surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.10205 | DOI Listing |
J Dent Sci
December 2024
Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.
View Article and Find Full Text PDFJ Dent Sci
December 2024
Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan.
Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.
View Article and Find Full Text PDFMethodsX
December 2024
Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India.
This paper provides a thorough analysis of recent advancements and emerging trends in the integration of metal additive manufacturing (AM) within orthopedic implant development. With an emphasis on the use of various metals and alloys, including titanium, cobalt-chromium, and nickel-titanium, the review looks at their characteristics and how they relate to the creation of various orthopedic implants, such as spinal implants, hip and knee replacements, and cranial-facial reconstructions. The study highlights how metal additive manufacturing (AM) can revolutionize the field by enabling customized implant designs that take patient anatomical variances into account.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute for Engineering Design and Product Development, Research Unit Tribology E307-05, TU Wien, Vienna, 1060, Austria.
Metal-organic framework (MOF) nanoparticles have attracted widespread attention as lubrication additives due to their tunable structures and surface effects. However, their solid lubrication properties have been rarely explored. This work introduces the positive role of moisture in solid lubrication in the case of a newly described Ti-based MOF (COK-47) powder.
View Article and Find Full Text PDFSci Rep
January 2025
Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!