The giant reticulospinal synapse in lamprey provides a unique model to study synaptic vesicle traffic. The axon permits microinjections, and the active zones are often separated from each other, which makes it possible to track vesicle cycling at individual release sites. However, the proportion of reticulospinal synapses with individual active zones ("simple synapses") is unknown and a quantitative description of their organization is lacking. Here, we report such data obtained by serial section analysis, intermediate-voltage electron microscopy, and electron tomography. The simple synapse was the most common type (78%). It consisted of one active zone contacting one dendritic process. The remaining synapses were "complex," mostly containing one vesicle cluster and two to three active zones synapsing with distinct dendritic shafts. Occasional axosomatic synapses with multiple active zones forming synapses with the same cell were also observed. The vast majority of active zones in all synapse types contained both chemical and electrotonic synaptic specializations. Quantitative analysis of simple synapses showed that the majority had active zones with a diameter of 0.8-1.8 microm. The number of synaptic vesicles and the height of the vesicle cluster in middle sections of serially cut synapses correlated with the active zone length within, but not above, this size range. Electron tomography of simple synapses revealed small filaments between the clustered synaptic vesicles. A single vesicle could be in contact with up to 12 filaments. Another type of filament, also associated with synaptic vesicles, emerged from dense projections. Up to six filaments could be traced from one dense projection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.10310 | DOI Listing |
Nat Commun
January 2025
Los Alamos National Laboratory, EES-17 National Security Earth Science, Los Alamos, NM, 87545, USA.
Significant progress has been made in probing the state of an earthquake fault by applying machine learning to continuous seismic waveforms. The breakthroughs were originally obtained from laboratory shear experiments and numerical simulations of fault shear, then successfully extended to slow-slipping faults. Here we apply the Wav2Vec-2.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
SinoProbe Laboratory, Key Laboratory of Continental Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China.
The onset age and depth of the central Tibet strike-slip faults are two still unresolved fundamental issues with regard to the Cenozoic tectonic evolution of central Tibet. Here we present a comprehensive dataset of geochronological, geochemical and structural data on recently discovered en-echelon dykes representing the incipient development of strike-slip faulting from the Lunpola basin in central Tibet. Our results provide evidence for mantle-derived, bimodal magmatism linked to lithospheric-scale strike-slip faulting at 35-32 Ma, and demonstrate that the central Tibet strike-slip faults are at least 20 Ma older than previously estimated (15-8 Ma).
View Article and Find Full Text PDFCurr Dev Nutr
January 2025
UNICEF Nigeria, Abuja, Nigeria.
Background: Nigerian pregnant and lactating women continue to experience high rates of malnutrition and Nigerian women experience long-term discrimination in the allocation and control of productive resources. Nigeria has policies and a governance architecture in place to advance nutrition, but these commitments lack recognition of how gender equity and nutrition are interwoven.
Objective: To address this gap, this study sought to identify and analyze the influence of gender dynamics and gender norms on nutrition and health-related practices in Nigeria.
BMC Plant Biol
January 2025
Department of Applied Sciences, Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, SLIIT Malabe Campus, Malabe, 10115, Sri Lanka.
Background: Basella alba L. (Malabar spinach) is a widely consumed leafy vegetable, well known for its nutritional and therapeutic properties. These properties arise from the availability of essential nutrients, phytochemicals, and antioxidant potential, which may vary depending on environmental factors induced by the geographical location.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Zweckverband Landeswasserversorgung, Laboratory for Operation Control and Research, Langenau, Germany.
Monitoring of genotoxic chemicals released into the water cycle or formed through transformation processes is critical to prevent harm to human health. The development of the high-performance thin-layer chromatography (HPTLC)-umu bioassay combines sample separation and detection of genotoxic substances in the low ng/L concentration range. In this study, raw, process, and drinking water samples from 11 different waterworks in Germany were analyzed using the HPTLC-umu.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!