To predict the consequences of human-induced global climate change, we need to understand how climate is linked to biogeography. Energetic constraints are commonly invoked to explain animal distributions, and physiological parameters are known to vary along distributional gradients. But the causal nature of the links between climate and animal biogeography remain largely obscure. Here we develop a bioenergetic model that predicts the feasibility of mammalian hibernation under different climatic conditions. As an example, we use the well-quantified hibernation energetics of the little brown bat (Myotis lucifugus) to parameterize the model. Our model predicts pronounced effects of ambient temperature on total winter energy requirements, and a relatively narrow combination of hibernaculum temperatures and winter lengths permitting successful hibernation. Microhabitat and northern distribution limits of M. lucifugus are consistent with model predictions, suggesting that the thermal dependence of hibernation energetics constrains the biogeography of this species. Integrating projections of climate change into our model predicts a pronounced northward range expansion of hibernating bats within the next 80 years. Bioenergetics can provide the simple link between climate and biogeography needed to predict the consequences of climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature00828 | DOI Listing |
Cad Saude Publica
January 2025
Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil.
An Acad Bras Cienc
January 2025
Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.
The region of the Maritime Antarctic suffers significantly from climate change, resulting in regional warming and consequently affecting coverage. This study characterized three surface zones of Collins Glacier and three other zones in ice-free areas on the Fildes Peninsula, which has an area of 29.6 km².
View Article and Find Full Text PDFSci Adv
January 2025
Department of Climate and Environmental Physics, University of Bern, 3012 Bern, Switzerland.
To assess the impact of ongoing, historically unprecedented Arctic ice melting, precisely synchronized chronologies are indispensable for past analogs of abrupt climate change. Around 12,900 years before present (B.P.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biology, Boston University, Boston, MA, USA.
Coral persistence in the Anthropocene depends on interactions among holobiont partners (coral animals and microbial symbionts) and their environment. Cryptic coral lineages-genetically distinct yet morphologically similar groups-are critically important as they often exhibit functional diversity relevant to thermal tolerance. In addition, environmental parameters such as thermal variability may promote tolerance, but how variability interacts with holobiont partners to shape responses to thermal challenge remains unclear.
View Article and Find Full Text PDFPLoS One
January 2025
Facultad de Ciencias Naturales y Exactas, Departamento de Biología y Geografía, Universidad de Oriente, Santiago de Cuba, Cuba.
Climate change is a global environmental threat, directly affecting biodiversity. Terrestrial gastropods are particularly susceptible to alterations in temperature and humidity and have develop morph-physiological and behavioural adaptations in this regard. Shell colour polymorphism and its potential implication for thermoresistance constitute an unexplored field in Neotropical land snails.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!