We determined 22 partial porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 sequences, representing pathogenic field strains mainly from Poland and Lithuania, and two currently available European-type live PRRSV vaccines. Also, the complete ORF7 of two Lithuanian and two Polish strains was sequenced. We found that Polish, and in particular Lithuanian, PRRSV sequences were exceptionally different from the European prototype, the Lelystad virus, and in addition showed a very high national diversity. The most diverse present-day European-type PRRSV sequences were from Poland (2000) and Lithuania (2000), and exhibited only 72.2% nucleotide identity in the investigated ORF5 sequence. While all sequences determined in the present study were clearly of European type, inclusion of the new Lithuanian sequences in the genealogy resulted in a common ancestor for the European type virus significantly closer to the American-type PRRSV than previously seen. In addition, the length of the ORF7 of the Lithuanian strains was 378 nucleotides, and thus intermediate between the sizes of the prototypical EU-type (387 nucleotides) and US-type (372 nucleotides) ORF7 lengths. These findings for the Lithuanian PRRSV sequences provide support for the hypothesis that the EU and US genotypes of PRRSV evolved from a common ancestor. Also, this is the first report of ORF7 protein size polymorphism in field isolates of EU-type PRRSV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/0022-1317-83-8-1861 | DOI Listing |
Life (Basel)
January 2025
Center for Complex Decision Analysis, Fudan University, Shanghai 200433, China.
Carl Woese's thesis of cellular evolution emphasized that the last universal common/cellular ancestor (LUCA) must have evolved by drawing from "global inventions". Yet, existing theories regarding the origin(s) of LUCA have mostly centered upon scenarios that LUCA had evolved mostly independently. In an earlier paper, we advanced a new theory regarding the origin(s) of LUCA that extends Woese's original insights.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
Background: (Günther; 1867) is a member of the family Polynemidae. The placement of Polynemidae among teleosts has varied over the years.
Methods: Therefore, in this study, we sequenced the complete mitochondrial genome of , analyzed the characterization of the mitochondrial genome, and investigated the phylogenetic relationships of Polynemidae.
Biology (Basel)
December 2024
Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.
We propose a hypothesis for the simultaneous emergence of bacteria, archaea, viruses, and mobile elements by sequential and concrete biochemical pathways. The emergence process can be considered analogous to crystallization, where genetic and biochemical systems stabilize as organisms evolve from their common ancestor, the LUCA, which was a non-free-living pool of single operon type genomes including double-stranded (ds) DNA at an ancient submarine alkaline vent. Each dsDNA operon was transcribed by different systems in σ, TFIIB, or TBP genomes.
View Article and Find Full Text PDFJ Infect
January 2025
Center for Disease Control and Prevention of Chinese PLA, Beijing, China. Electronic address:
Objectives: Salmonella enterica serovar Enteritidis (S. Enteritidis) is a commonly reported pathogen which adapts to multiple hosts and causes critical disease burden at a global level. Here, we investigated a recently derived epidemic sublineage with multidrug resistance (MDR), which have caused extended time-period and cross-regional gastroenteritis outbreaks and even invasive nontyphoidal Salmonella disease (iNTS) in China.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America.
We examined the evolutionary history of Phytophthora infestans and its close relatives in the 1c clade. We used whole genome sequence data from 69 isolates of Phytophthora species in the 1c clade and conducted a range of genomic analyses including nucleotide diversity evaluation, maximum likelihood trees, network assessment, time to most recent common ancestor and migration analysis. We consistently identified distinct and later divergence of the two Mexican Phytophthora species, P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!