In mice, vaccines inducing antibodies to the extracellular domain of the M2 protein (M2e) can confer protection to influenza A virus infection. Unlike the surface glycoproteins, haemagglutinin and neuraminidase, this domain of M2 is highly conserved and is therefore a potential broad-spectrum immunogen. In this study, the protection conferred by vaccines inducing antibodies to M2e was evaluated in a challenge model for swine influenza in pigs. A protein resulting from the fusion between M2e and the hepatitis B virus core protein (M2eHBc), with or without adjuvant, was evaluated. In addition, a DNA construct expressing a fusion protein between M2e and influenza virus nucleoprotein (M2eNP) was evaluated to see if the broad-spectrum protection conferred by antibodies could be further enhanced by T helper cells and cytotoxic T cells. All vaccines induced an antibody response against M2e, and the M2eNP DNA vaccine additionally induced an influenza virus-specific lymphoproliferation response. However, after challenge with a swine influenza virus (H1N1), no protection was observed in the vaccinated groups compared with the non-vaccinated control group. On the contrary, vaccinated pigs showed more severe clinical signs than the control pigs. The M2eNP DNA-vaccinated pigs showed the most severe clinical signs and three out of six pigs died on days 1 and 2 post-challenge. These results indicate that antibodies to M2e, especially in combination with cell-mediated immune responses, exacerbate disease. Thus, clinical signs after infection should be observed closely in further studies using M2e as an immunogen and caution should be exercised in using M2e in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1099/0022-1317-83-8-1851DOI Listing

Publication Analysis

Top Keywords

influenza virus
20
clinical signs
12
dna construct
8
construct expressing
8
fusion protein
8
vaccines inducing
8
inducing antibodies
8
m2e
8
protein m2e
8
protection conferred
8

Similar Publications

During the 2023-2024 winter, 11 high pathogenicity avian influenza (HPAI) outbreaks caused by clade 2.3.4.

View Article and Find Full Text PDF

A historical perspective of more than one hundred years of influenza surveillance in New York State demonstrates the progression from anecdotes and case counts to next-generation sequencing and electronic database management, greatly improving pandemic preparedness and response. Here, we determined if influenza virologic surveillance at the New York State public health laboratory (NYS PHL) tests sufficient specimen numbers within preferred confidence limits to assess situational awareness and detect novel viruses that pose a pandemic risk. To this end, we analyzed retrospective electronic data on laboratory test results for the influenza seasons 1997-1998 to 2021-2022 according to sample sizes recommended in the Influenza Virologic Surveillance Right Size Roadmap issued by the Association of Public Health Laboratories and Centers for Disease Control and Prevention.

View Article and Find Full Text PDF

Background: Understanding the interference patterns of respiratory viruses could be important for shedding light on potential strategies to combat these human infectious agents.

Objective: To investigate the possible interactions between adenovirus type 2 (AdV2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/H1N1 pandemic (H1N1pdm09) using the A549 cell line.

Methods: Single infections, co-infections, and superinfections (at 3 and 24 h after the first virus infection) were performed by varying the multiplicity of infection (MOI).

View Article and Find Full Text PDF

Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.

View Article and Find Full Text PDF

Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!