Fidelity of DNA polymerase epsilon holoenzyme from budding yeast Saccharomyces cerevisiae.

J Biol Chem

The Department of Biochemistry and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

Published: October 2002

DNA polymerases delta and epsilon (pol delta and epsilon) are the major replicative polymerases and possess 3'-5' proofreading exonuclease activities that correct errors arising during DNA replication in the yeast Saccharomyces cerevisiae. This study measures the fidelity of the holoenzyme of wild-type pol epsilon, the 3'-5' exonuclease-deficient pol2-4, a +1 frameshift mutator for homonucleotide runs, pol2C1089Y, and pol2C1089Y pol2-4 enzymes using a synthetic 30-mer primer/100-mer template. The nucleotide substitution rate for wild-type pol epsilon was 0.47 x 10(-5) for G:G mismatches, 0.15 x 10(-5) for T:G mismatches, and less than 0.01 x 10(-5) for A:G mismatches. The accuracy for A opposite G was not altered in the exonuclease-deficient pol2-4 pol epsilon; however, G:G and T:G misincorporation rates increased 40- and 73-fold, respectively. The pol2C1089Y pol epsilon mutant also exhibited increased G:G and T:G misincorporation rates, 22- and 10-fold, respectively, whereas A:G misincorporation did not differ from that of wild type. Since the fidelity of the double mutant pol2-4 pol2C1089Y was not greatly decreased, these results suggest that the proofreading 3'-5' exonuclease activity of pol2C1089Y pol epsilon is impaired even though it retains nuclease activity and the mutation is not in the known exonuclease domain.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M204476200DOI Listing

Publication Analysis

Top Keywords

pol epsilon
20
10-5 mismatches
12
epsilon
8
yeast saccharomyces
8
saccharomyces cerevisiae
8
delta epsilon
8
wild-type pol
8
exonuclease-deficient pol2-4
8
misincorporation rates
8
pol2c1089y pol
8

Similar Publications

Long AT repeat tracts form non-B DNA structures that stall DNA replication and cause chromosomal breakage. AT repeats are abundant in human common fragile sites (CFSs), genomic regions that undergo breakage under replication stress. Using an in vivo yeast model system containing AT-rich repetitive elements from human CFS FRA16D, we find that DNA polymerase zeta (Pol ζ) is required to prevent breakage and subsequent deletions at hairpin and cruciform forming (AT/TA)n sequences, with little to no role at an (A/T)28 repeat or a control non-structure forming sequence.

View Article and Find Full Text PDF

Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers.

View Article and Find Full Text PDF

TTF2 promotes replisome eviction from stalled forks in mitosis.

bioRxiv

November 2024

Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

When cells enter mitosis with under-replicated DNA, sister chromosome segregation is compromised, which can lead to massive genome instability. The replisome-associated E3 ubiquitin ligase TRAIP mitigates this threat by ubiquitylating the CMG helicase in mitosis, leading to disassembly of stalled replisomes, fork cleavage, and restoration of chromosome structure by alternative end-joining. Here, we show that replisome disassembly requires TRAIP phosphorylation by the mitotic Cyclin B-CDK1 kinase, as well as TTF2, a SWI/SNF ATPase previously implicated in the eviction of RNA polymerase from mitotic chromosomes.

View Article and Find Full Text PDF

Molecular mechanism of parental H3/H4 recycling at a replication fork.

Nat Commun

November 2024

Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.

Article Synopsis
  • Histone recycling from parental DNA to new strands is crucial for passing down epigenetic information during chromatin replication.
  • An experiment showed that disrupting the interaction between Mcm2 and a histone complex affects recycling, but more details about the specific mechanisms involved are still unknown.
  • Simulations of yeast DNA replication revealed that histones can be recycled through different pathways and that the binding of RPA influences how much is recycled to each strand, while DNA bending by Pol ε affects where the histones end up.
View Article and Find Full Text PDF

Clamping Pol ε to the leading strand.

Nat Struct Mol Biol

November 2024

Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!