The second messenger, diacylglycerol (DAG), introduces negative curvature in phospholipid monolayers and strongly induces the lamellar (L(alpha)) to reverse hexagonal (H(II)) phase transition. The chain lengths and degree of unsaturation of symmetric DAGs influence this effect. Within dioleoylphosphatidylcholine (DOPC) monolayers, the apparent spontaneous radius of curvature (R(0)) of the short, saturated dicaprylglycerol (C10-DCG) itself was determined to be -13.3 A, compared with an R(0) value of -10.1 A for the long, di-monounsaturated dioleoylglycerol (C18-DOG). Such increased length and unsaturation of the DAG acyl chains produces this small change. Di-saturated phosphatidylcholines (PCs) with equal length chains (from C10-C18) with 25 mol % DOG do not form the H(II) phase, even under the unstressed conditions of excess water and alkane. Di-unsaturated PCs with equal chain length (from C14-C18) with 25 mol % DOG do form the H(II) phase. Asymmetric chained PCs (position 1 saturated with varying lengths, position 2 differentially unsaturated with varying lengths) all form the H(II) phase in the presence of 25 mol % DOG. As a general rule for PCs, their unsaturation is critical for the induction of the H(II) phase by DOG. The degree of curvature stress induced by the second messenger DOG in membranes, and any protein that might be affected by it, would appear to depend on chain unsaturation of neighboring PCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302201 | PMC |
http://dx.doi.org/10.1016/s0006-3495(02)75223-5 | DOI Listing |
Deep eutectic solvents are highly tailorable non-aqueous solvents with potential applications ranging from energy catalysis to cryopreservation. Self-assembled lipid structures are already used in a variety of industries including cosmetics, drug delivery and as microreactors. However, most research into lipid self-assembly has been limited to aqueous solvents.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (H) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L) or sponge (L) phases, at pH 7.
View Article and Find Full Text PDFTrends Parasitol
January 2025
Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand; HSM, University of Montpellier, CNRS, IRD, Montpellier, France. Electronic address:
Success in the national control of malaria during the past decades has led to the reorientation of Thailand's program toward the elimination of this disease. The country established and implemented a National Malaria Elimination Strategy, resulting in a substantial decline in cases. Although the reduction varied, Sisaket Province stands out as a success.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2024
Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States.
To function effectively, pulmonary surfactant must adsorb rapidly to the alveolar air/water interface but avoid collapse from the surface when compressed to high interfacial densities. Prior studies show that phospholipids in the cylindrical monolayers of the inverse hexagonal (H) phase adsorb quickly. The monolayers have negative curvature, defined by the concave shape of the hydrophilic face.
View Article and Find Full Text PDFDis Esophagus
November 2024
Department of Upper Gastrointestinal Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia.
The rapid uptake of minimally invasive antireflux surgery has led to interest in learning curves for this procedure. This study ascertains the learning curve in laparoscopic and robotic-assisted antireflux surgery. A systematic review of the literature pertaining to learning curves in minimally invasive fundoplication with or without hiatal hernia repair was performed using PubMed, Medline, Embase, Web of Science, and Cochrane Library databases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!