A-ring fluorination of estradiol (ES) at position 2 or 4 decreases the rate of metabolism by blocking the formation of catechol estrogens, one of the major metabolic pathways of ES. We postulate that adding a 2- or 4-fluoro substituent to 16alpha-[18F]fluoroestradiol (FES), a positron emission tomography (PET) radiopharmaceutical used for estrogen receptor (ER) imaging, should prolong its blood circulation time, and thus, improve its localization in ER-rich target tissues. On such account, we prepared a series of FES derivatives substituted with a fluorine atom at C2 or C4, with or without an 11beta-OMe group, and we tested their binding affinities for the ER and different serum proteins including rat alphafetoprotein (AFP) and human sex hormone-binding globulin (SHBG). Labeling at the 16alpha-position was accomplished via nucleophilic substitution with [18F]F(-) on the reactive 16beta,17beta-cyclic sulfate intermediates. Decay corrected yields varied between 30 and 50% for a total synthesis time of 120 min, providing final products with specific activities >3000 Ci/mmol. The 18F-labeled analogs were evaluated for their biodistribution in immature female rats. Substitutions with the 4-F have little effect on binding affinities. Addition of the 2-F diminishes ER and AFP-binding affinities while augmenting the affinity for the SHBG. Addition of the 11beta-OMe decreases all binding affinities, particularly to AFP and SHBG. In contrast, biodistribution of the corresponding [16alpha-18F]fluoro analogs in immature female rats revealed that the presence of the 11beta-OMe group improves ER-mediated uterus uptake, with the 4,16alpha-[16alpha-18F]difluoro-11beta-methoxyestradiol showing the highest uptake values (15% ID at 1-h post-injection). These data suggest that the addition of both a 4-F and 11beta-OMe group onto FES may provide an improved radiopharmaceutical for PET imaging of ER densities in breast cancer patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0039-128x(02)00025-9 | DOI Listing |
Int J Mol Sci
February 2023
Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal.
Estradiol-BODIPY linked via an 8-carbon spacer chain and 19-nortestosterone- and testosterone-BODIPY linked via an ethynyl spacer group were evaluated for cell uptake in the breast cancer cell lines MCF-7 and MDA-MB-231 and prostate cancer cell lines PC-3 and LNCaP, as well as in normal dermal fibroblasts, using fluorescence microscopy. The highest level of internalization was observed with 11β-OMe-estradiol-BODIPY and 7α-Me-19-nortestosterone-BODIPY towards cells expressing their specific receptors. Blocking experiments showed changes in non-specific cell uptake in the cancer and normal cells, which likely reflect differences in the lipophilicity of the conjugates.
View Article and Find Full Text PDFSteroids
August 2002
Department of Nuclear Medicine and Radiobiology, Faculty of Medicine, Sherbrooke PET Center, Université de Sherbrooke, Sherbrooke, Que., Canada J1H 5N4.
A-ring fluorination of estradiol (ES) at position 2 or 4 decreases the rate of metabolism by blocking the formation of catechol estrogens, one of the major metabolic pathways of ES. We postulate that adding a 2- or 4-fluoro substituent to 16alpha-[18F]fluoroestradiol (FES), a positron emission tomography (PET) radiopharmaceutical used for estrogen receptor (ER) imaging, should prolong its blood circulation time, and thus, improve its localization in ER-rich target tissues. On such account, we prepared a series of FES derivatives substituted with a fluorine atom at C2 or C4, with or without an 11beta-OMe group, and we tested their binding affinities for the ER and different serum proteins including rat alphafetoprotein (AFP) and human sex hormone-binding globulin (SHBG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!