The neuropeptide galanin has not been localized previously in the primate uvea, and the neuropeptide somatostatin has not been localized in the uvea of any mammal. Here, the distribution of galanin-like and somatostatin-like immunoreactive axons in the iris, ciliary body and choroid of macaques and baboons using double and triple immunofluorescence labeling techniques and confocal microscopy was reported. In the ciliary body, galanin-like immunoreactive axons innervated blood vessels and the ciliary processes, particularly at their bases. In the iris, the majority of these axons was associated with the loose connective tissue in the stroma. Somatostatin-like immunoreactive axons were found in many of the same areas of the uvea supplied by cholinergic nerves. In the ciliary body, there were labelled axons within the ciliary processes and ciliary muscle. They were also found alongside blood vessels in the ciliary stroma. In the iris, somatostatin-like immunoreactive axons were abundant in the sphincter muscle and less so in the dilator muscle. A unilateral sympathectomy had no effect on the distribution of somatostatin-like or galanin-like immunoreactive axons, and these axons did not contain the sympathetic marker tyrosine hydroxylase. They did not contain the parasympathetic marker choline acetyltransferase, either. The galanin-like immunoreactive axons contained other neuropeptides found in sensory nerves, including calcitonin gene-related peptide, substance P and cholecystokinin. Somatostatin-like immunoreactive axons did not contain any of these sensory neuropeptides or galanin-like immunoreactivity, and they were neither labelled with an antibody to 200kDa neurofilament protein, nor did they bind isolectin-IB(4). Nevertheless, they are likely to be of sensory origin because somatostatin-like immunoreactive perikarya have previously been localized in the trigeminal ganglion of primates. Taken together, these findings indicate galanin and somatostatin are present in two different subsets of sensory axons in primate uvea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995084PMC
http://dx.doi.org/10.1006/exer.2002.1179DOI Listing

Publication Analysis

Top Keywords

immunoreactive axons
32
somatostatin-like immunoreactive
20
axons
12
ciliary body
12
galanin-like immunoreactive
12
immunoreactive
9
galanin somatostatin
8
macaques baboons
8
primate uvea
8
blood vessels
8

Similar Publications

Compelling evidence has demonstrated that rehabilitation through physical exercise, a non-invasive and non-surgical intervention, enhances muscle reinnervation and motor recovery after peripheral nerve injury (PNI) by increasing muscle-derived brain-derived neurotrophic factor (BDNF) expression and triggering TrkB-dependent axonal plasticity. Adenosine has been widely acknowledged to trigger TrkB via A2A receptor (A2AR). Since motor nerve terminals co-express TrkBs and A2ARs and depolarizing conditions increase muscle release of BDNF and adenosine, we examined whether A2ARs activation could recapitulate the functional recovery benefits of intermittent exercise after a nerve crush.

View Article and Find Full Text PDF

Larvae of the flesh fly, Sarcophaga similis exhibit photoperiodic responses to control pupal diapause. Although the external coincidence model is applicable to S. similis photoperiodism, it remains unknown how the circadian clock system integrates day-length information.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.

View Article and Find Full Text PDF

Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Brain Struct Funct

January 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.

Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.

View Article and Find Full Text PDF

While hypothalamic kisspeptin (KP) neurons play well-established roles in the estrogen-dependent regulation of reproduction, little is known about extrahypothalamic KP-producing (KP) neurons of the lateral septum. As established previously, expression in this region is low and regulated by estrogen receptor- and GABA receptor-dependent mechanisms. Our present experiments on knock-in mice revealed that transgene expression in the LS begins at P33-36 in females and P40-45 in males and is stimulated by estrogen receptor signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!