The butadienyl moiety in the title compound is bound to both cage-boron and rhenium vertices, and arises from coupling of two alkyne molecules at the rhenium centre, unprecedented in metallacarbaborane chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b201772pDOI Listing

Publication Analysis

Top Keywords

alkyne coupling
4
coupling rhenacarbaborane
4
rhenacarbaborane chemistry
4
chemistry structure
4
structure [12-mu-nhbut-22-co2-32-sigmaeta
4
[12-mu-nhbut-22-co2-32-sigmaeta 2-c=chbut-ch=chbut-closo-21-recb10h9]
4
2-c=chbut-ch=chbut-closo-21-recb10h9] butadienyl
4
butadienyl moiety
4
moiety title
4
title compound
4

Similar Publications

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes.

Acc Chem Res

January 2025

Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.

View Article and Find Full Text PDF

Modulating π-bridge in donor-π-acceptor covalent organic frameworks for low-energy-light-driven photocatalytic reaction.

J Colloid Interface Sci

December 2024

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China. Electronic address:

Most of the photocatalytic reactions are currently driven by high-energy light (UV, blue light), which inevitably leads to side reactions and co-catalyst deactivation. Therefore, there is an urgent need to prepare novel photocatalysts with low-energy photocatalytic properties. Herein, we report a rational molecular design of covalent organic frameworks (COFs) equipped with donor-π-acceptor systems with different π-bridges (aromatic ring, mono- and bis-alkynyl).

View Article and Find Full Text PDF

Hydroalkylation of terminal alkynes is a powerful approach to the synthesis of disubstituted alkenes. However, its application is largely unexplored in the synthesis of α,β-unsaturated carbonyls, which are common among synthetic intermediates and biologically active molecules. The thermodynamically less stable -isomers of activated alkenes have been particularly challenging to access because of their propensity for isomerization and the paucity of reliable -selective hydroalkylation methods.

View Article and Find Full Text PDF

Programming and synthesizing bifunctional materials for regulating the output of triboelectric nanogenerators (TENGs) and their photocatalytic efficiency is a promising strategy for energy harvesting to build self-powered systems. Herein, we tackle this challenge by introducing metal-organic frameworks (MOFs) as molecular catalysts and triboelectric layers for self-powered photocatalytic systems. A zeolite-like mixed-valence MOF () and a ladder-structured MOF () were obtained through structural transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!