Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae.

Antimicrob Agents Chemother

Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.

Published: August 2002

Although the antimicrobial effects of silver salts were noticed long ago, the molecular mechanism of the bactericidal action of Ag(+) in low concentrations has not been elucidated. Here, we show that low concentrations of Ag(+) induce a massive proton leakage through the Vibrio cholerae membrane, which results in complete deenergization and, with a high degree of probability, cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC127333PMC
http://dx.doi.org/10.1128/AAC.46.8.2668-2670.2002DOI Listing

Publication Analysis

Top Keywords

vibrio cholerae
8
low concentrations
8
chemiosmotic mechanism
4
mechanism antimicrobial
4
antimicrobial activity
4
activity ag+
4
ag+ vibrio
4
cholerae antimicrobial
4
antimicrobial effects
4
effects silver
4

Similar Publications

For any organism, survival is enhanced by the ability to sense and respond to threats in advance. For bacteria, danger sensing among kin cells has been observed, but the presence or impacts of general danger signals are poorly understood. Here we show that different bacterial species use exogenous peptidoglycan fragments, which are released by nearby kin or non-kin cell lysis, as a general danger signal.

View Article and Find Full Text PDF

Structural and functional analysis of the lipoprotein chaperone LolA.

Front Microbiol

December 2024

Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.

Lipoproteins are crucial for maintaining the structural integrity of bacterial membranes. In Gram-negative bacteria, the localization of lipoprotein (Lol) system facilitates the transport of these proteins from the inner membrane to the outer membrane. In , an ε-proteobacterium, lipoprotein transport differs significantly from the canonical and well-studied system in , particularly due to the absence of LolB and the use of a LolF homodimer instead of the LolCE heterodimer.

View Article and Find Full Text PDF

Biofilms are ubiquitous surface-associated bacterial communities embedded in an extracellular matrix. It is commonly assumed that biofilm cells are glued together by the matrix; however, how the specific biochemistry of matrix components affects the cell-matrix interactions and how these interactions vary during biofilm growth remain unclear. Here, we investigate cell-matrix interactions in Vibrio cholerae, the causative agent of cholera.

View Article and Find Full Text PDF

Cholera rapid diagnostic tests (RDTs) are vulnerable to virulent bacteriophage predation. We hypothesized that an enhanced cholera RDT that detects the common virulent bacteriophage ICP1 might serve as a proxy for pathogen detection. We previously developed a monoclonal antibody (mAb) to the ICP1 major capsid protein.

View Article and Find Full Text PDF

Gene regulation at the post-transcriptional level is prevalent in all domains of life. In bacteria, ProQ-like proteins have emerged as important RNA chaperones facilitating RNA stability and RNA duplex formation. In the major human pathogen Vibrio cholerae, post-transcriptional gene regulation is key for virulence, biofilm formation, and antibiotic resistance, yet the role of ProQ has not been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!