Previous studies have demonstrated that low density lipoprotein (LDL) enriched in polyunsaturated fatty acids (PUFA) are more susceptible to oxidation (ex vivo) than those containing monounsaturated fatty acids (MUFA). To test whether this observation was associated with various parameters considered to be related with the development of early aortic atherosclerosis, hamsters were fed commercial hypercholesterolemic diets (HCD) containing either the PUFA, sunflower oil (SF) or the MUFA, TriSun oil (TS) at 10% with 0.4% cholesterol (wt/wt). LDL isolated from hamsters fed TS had significantly longer lag phase (30%, P < 0.05), a decreased propagation phase (-62%, P < 0.005), and fewer conjugated dienes formed (-37%, P < 0.007) compared to hamsters fed SF. Aortic vasomotor function, measured as degree of aortic relaxation, was significantly greater in the TS vs SF-fed hamsters whether acetylcholine or the calcium ionophore A23187 was used as the endothelium-dependent agonist. As a group, the SF-fed hamsters had significantly more early atherosclerosis than hamsters fed TS (46%, P < 0.006). When animals across the two diets were pair-matched by plasma LDL-C levels, there was an 82% greater mean difference (P < 0.002) in early atherosclerosis in the SF versus the TS-fed hamsters. While there were no significant associations with plasma lipids and lipoprotein cholesterol, early atherosclerosis was significantly correlated with lag phase (r = -0.67, p < 0.02), rate of LDL conjugated diene formation (r = 0.74, p < 0.006) and maximum dienes formed (r = 0.67, p < 0.02). Compared to TS-fed animals, aortic sections from hamsters fed the SF-containing diet revealed that the cytoplasm of numerous foam cells in the subendothelial space reacted positively with the monoclonal anti-bodies MDA-2 and NA59 antibody, epitopes found on oxidized forms of LDL. The present study suggests that compared to TS, hamsters fed the SF-diet demonstrated enhanced LDL oxidative susceptibility, reduced aortic relaxation, greater early aortic atherosclerosis and accumulation of epitopes found on oxidized forms of LDL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0955-2863(02)00202-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!