Ran binds to chromatin by two distinct mechanisms.

Curr Biol

European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.

Published: July 2002

Ran GTPase plays important roles in nucleocytoplasmic transport in interphase and in both spindle formation and nuclear envelope (NE) assembly during mitosis. The latter functions rely on the presence of high local concentrations of GTP-bound Ran near mitotic chromatin. RanGTP localization has been proposed to result from the association of Ran's GDP/GTP exchange factor, RCC1, with chromatin, but Ran is shown here to bind directly to chromatin in two modes, either dependent or independent of RCC1, and, where bound, to increase the affinity of chromatin for NE membranes. We propose that the Ran binding capacity of chromatin contributes to localized spindle and NE assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-9822(02)00927-2DOI Listing

Publication Analysis

Top Keywords

chromatin
5
binds chromatin
4
chromatin distinct
4
distinct mechanisms
4
mechanisms gtpase
4
gtpase plays
4
plays roles
4
roles nucleocytoplasmic
4
nucleocytoplasmic transport
4
transport interphase
4

Similar Publications

Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification.

Circ Res

January 2025

British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).

Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.

Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.

View Article and Find Full Text PDF

High mobility group box 1 (HMGB1) mediates nicotine-induced podocyte injury.

Front Pharmacol

January 2025

Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.

Introduction: Cigarette smoking is a well-established risk factor for renal dysfunction. Smoking associated with renal damage bears distinct physiological correlations in conditions such as diabetic nephropathy and obesity-induced glomerulopathy. However, the cellular and molecular basis of such an association remains poorly understood.

View Article and Find Full Text PDF

Cancer's epigenetic landscape, a labyrinthine tapestry of molecular modifications, has long captivated researchers with its profound influence on gene expression and cellular fate. This review discusses the intricate mechanisms underlying cancer epigenetics, unraveling the complex interplay between DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. We navigate through the tumultuous seas of epigenetic dysregulation, exploring how these processes conspire to silence tumor suppressors and unleash oncogenic potential.

View Article and Find Full Text PDF

REV7: a small but mighty regulator of genome maintenance and cancer development.

Front Oncol

January 2025

Department of Biology, Tufts University, Medford, MA, United States.

REV7, also known as MAD2B, MAD2L2, and FANCV, is a HORMA-domain family protein crucial to multiple genome stability pathways. REV7's canonical role is as a member of polymerase ζ, a specialized translesion synthesis polymerase essential for DNA damage tolerance. REV7 also ensures accurate cell cycle progression and prevents premature mitotic progression by sequestering an anaphase-promoting complex/cyclosome activator.

View Article and Find Full Text PDF

Background: Human responses and acclimation to the environmental stresses of high altitude and low oxygen are multifaceted and regulated by multiple genes. However, the mechanism of how the body adjusts in a low-oxygen environment is not yet clear.

Results: Hence, we performed RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) to observe the changes of transcriptome and chromatin accessibility in the peripheral blood of eight individuals at 1 h post adaptation in a simulated plateau environment with 3500 m and 4500 m altitude, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!