Radiation hybrid (RH) mapping, a somatic cell genetic technique, has been developed in animal systems as a general approach for the construction of long-range physical maps of chromosomes. This statistical method relies on X-ray induced breakage of chromosomes to determine the physical distance between markers, as well as their order on the chromosome. The method can be applied to single chromosomes or across the whole genome. The generation of plant (barley) radiation hybrids and their culture in vitro is described here. PCR-based marker systems are used to verify hybrid status and to demonstrate genome coverage. RH panels of the type generated can be used for physical mapping, map-based cloning, or sequence contig assembly. RH resources will greatly aid the physical characterisation of crop plants with large genomes.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-313x.2002.01351.xDOI Listing

Publication Analysis

Top Keywords

radiation hybrid
8
constructing plant
4
plant radiation
4
hybrid panels
4
panels radiation
4
hybrid mapping
4
mapping somatic
4
somatic cell
4
cell genetic
4
genetic technique
4

Similar Publications

DECT sparse reconstruction based on hybrid spectrum data generative diffusion model.

Comput Methods Programs Biomed

January 2025

Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China.

Purpose: Dual-energy computed tomography (DECT) enables the differentiation of different materials. Additionally, DECT images consist of multiple scans of the same sample, revealing information similarity within the energy domain. To leverage this information similarity and address safety concerns related to excessive radiation exposure in DECT imaging, sparse view DECT imaging is proposed as a solution.

View Article and Find Full Text PDF

Background: Radiographic skeletal survey plays an important role in the diagnosis of infant abuse. Some practitioners have expressed concerns about the radiation exposure from this examination.

Objective: To utilize state-of-the-art hybrid computational phantoms to more accurately estimate radiation doses of skeletal surveys performed for suspected infant abuse.

View Article and Find Full Text PDF

Objective: To evaluate large language models (LLMs) for pre-test diagnostic probability estimation and compare their uncertainty estimation performance with a traditional machine learning classifier.

Materials And Methods: We assessed 2 instruction-tuned LLMs, Mistral-7B-Instruct and Llama3-70B-chat-hf, on predicting binary outcomes for Sepsis, Arrhythmia, and Congestive Heart Failure (CHF) using electronic health record (EHR) data from 660 patients. Three uncertainty estimation methods-Verbalized Confidence, Token Logits, and LLM Embedding+XGB-were compared against an eXtreme Gradient Boosting (XGB) classifier trained on raw EHR data.

View Article and Find Full Text PDF
Article Synopsis
  • Developed a statistical model to predict severe acute oral mucositis in head and neck cancer patients receiving carbon-ion radiation therapy.
  • Used a combination of clinical data, dose-volume statistics, and advanced imaging features for better prediction accuracy.
  • The model showed high accuracy rates (87.1% training, 90.7% test) and can potentially aid in treatment planning and identifying patients at high risk for this complication.
View Article and Find Full Text PDF

Introduction: A hybrid approach with very high-power short-duration (vHPSD) posteriorly and ablation-index guided HPSD (50 W) anteriorly seems to be an optimal balance between efficiency and effectiveness for point-by-point pulmonary vein isolation (PVI). The aim of the current study is to compare vHPSD/HPSD ablation to cryoballoon ablation (CBA) in patients with symptomatic atrial fibrillation (AF).

Methods And Results: In this retrospective single-center study, we identified 110 consecutive patients who underwent their first PVI with either vHPSD/HPSD (n = 54) or CBA (n = 56).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!