We have developed new methods for preparing functionalized benzynes through deprotonative zincation as a key reaction using R2Zn(TMP)Li, and we also describes dramatic ligand effects on the benzyne formation. Deprotonative zincation of various meta-substituted bromobenzenes with Me2Zn(TMP)Li proved effective for the one-pot generation of various 3-functionalized benzynes, particularly those electrophilic substituents such as ester, amide, and cyano. On the other hand, zincation with tBu2Zn(TMP)Li, followed by electrophilic trapping (with I2) proved a powerful tool for the preparation of 1,2,3-trisubstituted aromatic compounds.8 The resultant 1,2,3-trisubstituted benzenes are available as precursors for generation of 3-substituted benzynes by halogen-zinc exchange reactions with Me3ZnLi. These methods offer far greater generality than previous methods for the synthesis of functionalized asymmetric benzynes, and should be of value in new syntheses of various natural products and functional materials. In addition, these results underline the utility of spectator ligands on the central metal of ate complexes as a tunable functionality in the development of new ate complex-promoted reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0202199DOI Listing

Publication Analysis

Top Keywords

functionalized asymmetric
8
asymmetric benzynes
8
deprotonative zincation
8
benzynes
5
generation functionalized
4
benzynes tmp-zincates
4
tmp-zincates effects
4
effects ligands
4
ligands selectivity
4
selectivity reactivity
4

Similar Publications

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.

View Article and Find Full Text PDF

A Stable Solid-Electrolyte Interphase Constructed by a Nucleophilic Molecule Additive for the Zn Anode with High Utilization and Efficiency.

ACS Appl Mater Interfaces

January 2025

College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, China.

The solid-electrolyte interphase (SEI) strongly determines the stability and reversibility of aqueous Zn-ion batteries (AZIBs). In traditional electrolytes, the nonuniform SEI layer induced by severe parasitic reactions, such as the hydrogen evolution reaction (HER), will exacerbate the side reactions on Zn anodes, thus leading to low zinc utilization ratios (ZURs). Herein, we propose to use methoxy ethylamine (MOEA) as a nucleophilic additive, which has a stronger nucleophilic characteristic than water, with the advantage of an abundance of nucleophilic atoms.

View Article and Find Full Text PDF

High-Strength Anisotropic Fluorescent Hydrogel Based on Solvent Exchange for Patterning.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.

Aggregation-induced emission (AIE)-active fluorescent hydrogel materials have found extensive applications in soft robotics, wearable electronics, information encryption, and biomedicine. Nevertheless, it continues to be difficult to create hydrogels that are both highly luminescent and possess strong mechanical capabilities. This study introduces a combined approach of prestretching and solvent exchange to create anisotropic luminous hydrogels made of poly(methacrylic acid-methacrylamide).

View Article and Find Full Text PDF

Robust preclinical models of asymmetric ventricular loading in late gestation reflecting conditions such as hypoplastic left heart syndrome are lacking. We characterized the morphometry and microvascular function of the hypoplastic left ventricle (LV) and remaining right ventricle (RV) in a sham-controlled late gestation fetal lamb model of impaired left ventricular inflow (ILVI). Singleton fetuses were instrumented at ∼120 days gestational age (dGA; term is ∼147 days) with vascular catheters, an aortic flow probe and a deflated left atrial balloon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!