Discovery of a novel synthetic phosphatase from a bead-bound combinatorial library.

Chem Commun (Camb)

Department of Chemistry, Venable and Kenan Laboratories, UNC Chapel Hill, Chapel Hill, NC 27516, USA.

Published: March 2002

Using split/pool encoded synthesis and a colorimetric catalysis assay, a number of synthetic phosphatase catalysts were developed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b111036eDOI Listing

Publication Analysis

Top Keywords

synthetic phosphatase
8
discovery novel
4
novel synthetic
4
phosphatase bead-bound
4
bead-bound combinatorial
4
combinatorial library
4
library split/pool
4
split/pool encoded
4
encoded synthesis
4
synthesis colorimetric
4

Similar Publications

Metastasizing cancer cells surreptitiously can adapt to metabolic activity during their invasion. By initiating their communications for invasion, cancer cells can reprogram their cellular activities to initiate their proliferation and migration and uniquely counteract metabolic stress during their progression. During this reprogramming process, cancer cells' metabolism and other cellular activities are integrated and mutually regulated by tunneling nanotube communications to alter their specific metabolic functional drivers of tumor growth and progression.

View Article and Find Full Text PDF

This study aimed to provide insights into the hepatorenal toxicity induced by erythrosine, a synthetic red dye commonly used in food and pharmaceuticals, which has raised concerns over its potential health risks. Twenty-four rats were randomly divided into four groups (n = 6). The first group was the control group and the other group received one of three doses of erythrosine based on acceptable daily intake (¼ ADI, ½ ADI, and ADI, 0.

View Article and Find Full Text PDF

Urinalysis, as a non-invasive and efficient diagnostic method, is very important but faces great challenges due to the complex compositions of urine and limited naturally occurring biomarkers for diseases. Herein, by leveraging the intrinsic absence of endogenous fluorinated interference, a strategy with the enzymatically activated assembly of synthetic fluorinated peptide for cholestatic liver injury (CLI) diagnosis and treatment through F nuclear magnetic resonance (NMR) urinalysis and efficient drug retention is developed. Specifically, alkaline phosphatase (ALP), overexpressed in the liver of CLI mice, triggers the assembly of fluorinated peptide, thus, directing the traffic and dynamic distribution of the synthetic biomarkers after administration, whereas CLI mice display much slower clearance of peptides through urine as compared with healthy counterparts.

View Article and Find Full Text PDF

It was assumed that only autogenous bone had appropriate osteoconductive and osteoindutive properties for bone regeneration, but this assumption has been challenged. Many studies have shown that synthetic biomaterials must be considered as the best choice for guided bone regeneration. The objective of this work is to compare the performances of nanohydroxyapatite/β-tricalcium phosphate (n-HA/β-TCP) composite and autogenous bone grafting in bone regeneration applications.

View Article and Find Full Text PDF

Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.

Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!