Chiral ruthenium(II)-salen complexes [RuII(salen)(PPh3)2] catalyse asymmetric aziridination of alkenes with up to 83% ees, asymmetric amidation of silyl enol ethers with up to 97% ees, and allylic amidation of cholesteryl acetates with good regioselectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b109272cDOI Listing

Publication Analysis

Top Keywords

amidation silyl
8
silyl enol
8
enol ethers
8
cholesteryl acetates
8
ethers cholesteryl
4
acetates chiral
4
chiral rutheniumii
4
rutheniumii schiff-base
4
schiff-base catalysts
4
catalysts catalytic
4

Similar Publications

Due to the diverse chemical and physical properties of functional groups, mild and controllable ligation methods are often required to construct complex drugs and functional materials. To make diverse sets of products with tunable physicochemical properties, it is also useful to employ complimentary ligation methods that adopt the same starting materials. Here, we disclose the efficient and modular synthesis of amides or thioamides through the chemical ligation of acylsilanes with amines, simply by turning a light on or off.

View Article and Find Full Text PDF

Insights into the Silylation of Benzodiazepines Using ,-Bis(trimethylsilyl)trifluoroacetamide (BSTFA): In Search of Optimal Conditions for Forensic Analysis by GC-MS.

Molecules

December 2024

Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Sede Tunja, Avenida Central del Norte, Boyacá 150003, Colombia.

Silylation is a widely used derivatization technique for the gas chromatographic analysis of benzodiazepines, a class of psychoactive drugs commonly encountered in forensic and biological samples. This study investigated the optimal experimental conditions for the silylation of benzodiazepines using ,-bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane (BSTFA + 1% TMCS), a widely employed silylating agent. Ten structurally different benzodiazepines, including variations within the classic 1,4-benzodiazepine core and triazolo ring derivatives, were selected to address the effect of structural diversity on silylation.

View Article and Find Full Text PDF

Visible-light-driven net-1,2-hydrogen atom transfer of amidyl radicals to access β-amido ketone derivatives.

Chem Sci

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China

Hydrogen atom transfer (HAT) processes provide an important strategy for selective C-H functionalization. Compared with the popularity of 1,5-HAT processes, however, net-1,2-HAT reactions have been reported less frequently. Herein, we report a unique visible-light-mediated net-1,2-HAT of amidyl radicals for the synthesis of β-amido ketone derivatives.

View Article and Find Full Text PDF

Rhodium-Catalyzed Enantioselective Hydrosilylation of 1,1-Disubstituted Enamides.

Org Lett

December 2024

Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Catalytic hydrosilylation of 1,1-disubstituted enamides is one of the most challenging and synthetically useful processes in organosilicon chemistry and asymmetric catalysis. Herein, we report a rhodium-catalyzed enantioselective hydrosilylation of α-arylenamides with substituted hydrosilanes with the aid of chiral P-ligand, including newly developed spirophosphite ligands, giving various chiral β-silylated amides in excellent yields with good to excellent enantioselectivities (98:2 er after recrystallization). In addition, chiral β-silylated amines can be obtained by further functionalization of the hydrosilylation product.

View Article and Find Full Text PDF

α-Functionalized Si-, Ge-, B-, Se-, and S-amide moieties are present in many medicinally active molecules, but their synthesis remains challenging. Here, we demonstrate a high-throughput synthesis using amide-sulfoxonium ylides as carbene precursors in a Si-H, Ge-H, B-H, Se-H, and S-H insertion reactions to target a wide range of α-silyl, α-geryl, α-boryl, α-selenyl, and α-sulfur (hetero)amides. The process is featured as simple operation, mild conditions, broad substrate scope, high functional group compatibility, and excellent chemoselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!