Human skin fibroblasts may be the target cells for estrogens. The aim of present study was to confirm the presence of both isoforms of estrogen receptors (ER) in these cells. Experiments were carried out in primary cultures of human skin fibroblasts. ER-alpha and ER-beta mRNAs were measured by quantitative assays based on reverse transcription (RT) of the mRNA and polymerase chain reaction (PCR) amplification of the cDNA. To determine which of the ER isoforms were present and their intracellular locations immunohistochemical staining was performed. MCF-7 culture was a positive control for the immunostaining. The distribution immunostaining of ER-beta protein differed from that of ER-alpha in skin fibroblasts. ER-alpha was detected in both the cytosolic and nuclear compartments of fibroblasts. ER-beta was weakly detectable and was found predominantly in the nuclear compartment. Using the RT-PCR technique mRNA of both ERs was successfully detected in the skin fibroblast cultures with predominantly higher mean level of ER-beta mRNA expression than ER-alpha mRNA. In human culture skin fibroblasts ER-beta co-expresses with ER-alpha. The dominant expression of ER-beta in cultured female skin fibroblasts suggests that ER-beta may play a dominant role in collaboration with ER-alpha in the regulation of estrogen action in skin.

Download full-text PDF

Source

Publication Analysis

Top Keywords

skin fibroblasts
24
skin
8
human skin
8
fibroblasts er-alpha
8
fibroblasts er-beta
8
fibroblasts
7
er-beta
7
er-alpha
6
human
4
human cultured
4

Similar Publications

Relative Frequency of Metachromatic Leukodystrophy in Egypt: A Reference Laboratory Report.

Front Biosci (Schol Ed)

December 2024

Biochemical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622 Cairo, Egypt.

Background: Metachromatic leukodystrophy (MLD) is an autosomal recessive hereditary neurodegenerative disease caused by a deficiency in arylsulfatase A (ARSA) activity and belongs to the group of lysosomal storage diseases. A biochemical diagnosis of MLD is based on determining the residual ARSA activity in leukocytes, skin fibroblasts, and urine. This study documents our biochemical experience and estimates the relative frequency of MLD over 21 years (2001-2022).

View Article and Find Full Text PDF

Vitiligo is a skin disease that affects all ethnicities and genders and is characterized by the loss of pigment essentially due to the selective loss of melanocytes. Although it is generally considered a systemic disease associated with polymorphisms in genes involved in the immune response, vitiligo is also considered an oxidative imbalance-associated disease. It represents a multifactorial pathology in which some genetic predisposition and epigenetic factors coupled with some critical biochemical and molecular pathways could play a pivotal role.

View Article and Find Full Text PDF

Mitochondrial transplantation reconstructs the oxidative microenvironment within fibroblasts to reverse photoaging.

Biochem Biophys Res Commun

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.

Fibroblast-mediated oxidative stress is a pivotal factor in the pathogenesis of skin photoaging, predominantly induced by UVA radiation. Diverging from traditional strategies that concentrate on the reduction of reactive oxygen species (ROS), the present study implements mitochondrial transplantation as an innovative therapeutic approach. The objective of this study is to reestablish the oxidative microenvironment and to effectively rejuvenate cellular functionality through the direct introduction of healthy and vibrant mitochondria.

View Article and Find Full Text PDF

Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.

View Article and Find Full Text PDF

Pathological-microenvironment responsive injectable GelMA hydrogel with visualized biodegradation for pressure-assisted treatment of hypertrophic scars.

Int J Biol Macromol

December 2024

Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China. Electronic address:

Intralesional injection of 5-fluorouracil for the clinical treatment of hypertrophic scars (HS) remains challenging due to its short half-life, as well as the absence of evidence-based dosage and frequency injection guidelines. Herein, we developed a matrix metalloproteinases (MMPs)/reactive oxygen species (ROS)-responsive injectable prodrug hydrogel (GFP) that exhibits sustained drug release and fluorescence imaging capability, aiming to facilitate the optimization of injection dosage and frequency in HS treatment. The GFP hydrogel comprises gelatin methacryloyl and pendant methacryloyl-decorated tetrapeptide (PPPK) with 5-fluorouracil acetic acid/rhodamine B at the N-terminus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!