Actinobacillus pleuropneumoniae biovar 1 serotypes 2, 5a, 9 and 10 strains were tested for their ability to adhere to alveolar epithelial cells in culture. For the serotypes 5a, 9 and 10 strains, optimal adherence was observed after growth of bacterial cells in a NAD-restricted medium (0.001% NAD). This condition was also associated with the expression of a 55 kDa outer membrane protein (OMP) and of fimbriae. For the serotype 2 strain, adherence and expression of fimbriae and a 55 kDa OMP was less influenced by the growth conditions. The N-terminal amino acid sequence of the 55 kDa OMP had no homology with any known sequence, suggesting that it is an as yet unknown protein. Adherence capabilities were significantly reduced following treatment of the bacteria with proteolytic enzymes or heat. These findings suggest that proteins are involved in adhesion. The hydrophobic bond-breaking agent tetramethylurea was unable to inhibit the adherence of A. pleuropneumoniae to alveolar epithelial cells. Treatment of the bacteria with sodium metaperiodate resulted in lower adhesion scores for the serotypes 2 and 9 strains but the inhibition of adhesion was clearly lower than after treatment with proteolytic enzymes. This indicates that, besides proteins, carbohydrates might also be involved in adhesion of A. pleuropneumoniae to alveolar epithelial cells. The finding that inhibition of adhesion was very high when bacteria were treated with a combination of sodium metaperiodate and pronase also suggests that more than one adhesin is involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-1135(02)00080-9 | DOI Listing |
Front Pharmacol
January 2025
Cell Biology Laboratory, Federal University of Alagoas, Maceió, Brazil.
The epithelial-mesenchymal transition (EMT) is a biological process in which epithelial cells change into mesenchymal cells with fibroblast-like characteristics. EMT plays a crucial role in the progression of fibrosis. Classical inducers associated with the maintenance of EMT, such as TGF-β1, have become targets of several anti-EMT therapeutic strategies.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
Background And Aim: NK cells and NK-cell-derived cytokines were shown to regulate neutrophil activation in acute lung injury (ALI). However, the extent to which ALI regulates lung tissue-resident NK (trNK) activity and their molecular phenotypic alterations are not well defined. We aimed to assess the impact of 1,25-hydroxy-vitamin-D3 [1,125(OH)D] on ALI clinical outcome in a mouse model and effects on lung trNK cell activations.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
Sepsis-induced acute lung injury (ALI) remains a leading cause of mortality in critically ill patients. Macrophages, key modulators of immune responses, play a dual role in both promoting and resolving inflammation. Exosomes, small extracellular vesicles released by various cells, carry bioactive molecules that influence macrophage polarization and immune responses.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
University of Groningen, University Medical Center Groningen, Department of Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands.
Asthma is a genetically complex inflammatory airway disease associated with over 200 Single nucleotide polymorphisms (SNPs). However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples.
View Article and Find Full Text PDFChin Med J Pulm Crit Care Med
December 2024
Medical Research Center; The Zhejiang Key Laboratory of Intelligent Cancer, Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
Background: Necroptosis is a form of programmed cell death resulting in tissue inflammation due to the release of intracellular contents. Its role and regulatory mechanism in the context of acute lung injury (ALI) are unclear. Parkin (Prkn), an E3 ubiquitin ligase, has recently been implicated in the regulation of necroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!