Apatmers are synthesized using 2'-fluoropyrimdines in place of normal pyrmidines to stabilize them against enzymatic degradation, and thereby improve their therapeutic efficacy. Despite this stabilizing effect, the apatmers can still be degraded by nucleases in the blood. Primer template extension studies have demonstrated that mammalian DNA polymerases can incorporate these 2'-fluoropyrimidines into growing strands of DNA. The toxicologic effects of these compounds have been examined in rats and woodchucks, animals known to be susceptible to the toxic effects of other modified pyrimidines. Whether these nucleosides can be incorporated into DNA in vivo has not been established. These studies report the development of methodologies and the results of studies designed to determine if and to what extent 2'-fluoropyrimidines are incorporated into tissue DNA following long-term treatment. Rats were dosed intravenously with either 2'-fluorouridine (2'-FU) or 2'-fluorocytidine (2'-FC) at doses of 5, 50, and 500 mg/kg/day for 90 days. Woodchucks were dosed intravenously with either 2'-FU or 2'-FC at doses of 0.75 or 7.5 mg/kg/day for 90 days. The amounts of 2'-FU or 2'-FC in DNA and RNA were quantified using newly developed LC/MS/MS methodologies. Administration of 2'-FU to rats and woodchucks resulted in incorporation of the compound into DNA from liver, spleen, testis, muscle, and kidney. Incorporation also occurred in RNA from rat liver (only tissue examined). Similarly, administration of 2'-FC to rats and woodchucks resulted in incorporation into liver DNA (only tissue examined). These data demonstrate that 2'-fluoropyrimidines are incorporated into DNA and RNA of various tissues of rats and woodchucks following long-term administration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/tx020014d | DOI Listing |
Virol Sin
June 2021
State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Outbreaks of severe virus infections with the potential to cause global pandemics are increasingly concerning. One type of those commonly emerging and re-emerging pathogens are coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2). Wild animals are hosts of different coronaviruses with the potential risk of cross-species transmission.
View Article and Find Full Text PDFSemin Cell Dev Biol
January 2017
Department of Biology, The Pennsylvania State University, University Park, PA 16802, United States; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, United States.
Worldwide, there are 185 million people infected with hepatitis C virus and approximately 350,000 people die each year from hepatitis C associated liver diseases. Human hepatitis C research has been hampered by the lack of an appropriate in vivo model system. Most of the in vivo research has been conducted on chimpanzees, which is complicated by ethical concerns, small sample sizes, high costs, and genetic heterogeneity.
View Article and Find Full Text PDFMol Neurobiol
April 2017
Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
The common marmoset is a small New World primate that has attracted remarkable attention as a potential experimental animal link between rodents and humans. Adeno-associated virus (AAV) vector-mediated expression of a disease-causing gene or a potential therapeutic gene in the brain may allow the construction of a marmoset model of a brain disorder or an exploration of the possibility of gene therapy. To gain more insights into AAV vector-mediated transduction profiles in the marmoset central nervous system (CNS), we delivered AAV serotype 9 (AAV9) vectors expressing GFP to the cisterna magna or the cerebellar cortex.
View Article and Find Full Text PDFMol Imaging Biol
February 2014
Nuclear Medicine Division, Department of Radiology, University Hospitals Case Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.
Purpose: Radiolabeled methionine (Met) promises to be useful in the positron emission tomography (PET) imaging of hepatocellular carcinoma (HCC). However, its metabolic routes in HCC have not yet been fully understood. In this study, the metabolic pathway(s) of radiolabeled Met in HCC were investigated.
View Article and Find Full Text PDFInt J Med Sci
September 2013
School of Biotechnology, Southern Medical University, Guangzhou, China.
Viral vectors have been utilized extensively to introduce genetic material into the central nervous system. In order to investigate gene functions in cardiovascular control regions of rat brain, we applied WPRE (woodchuck hepatitis virus post-transcriptional regulatory element) enhanced-adenoviral (Ad) and adeno-assoicated virus (AAV) type 2 vectors to mediate neuronal gene delivery to the paraventricular nucleus of the hypothalamus, the nucleus tractus solitarius and the rostral ventrolateral medulla, three important cardiovascular control regions known to express renin-angiotensin system (RAS) genes. Ad or AAV2 harboring an enhanced green fluorescent protein (EGFP) reporter gene or the angiotensin type 2 receptor gene were microinjected into these brain regions in adult rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!