Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Survival of macrophage microbicidal activity is a prerequisite for invasive disease caused by the enteric pathogen Salmonella enterica serovar Typhimurium. Flavohemoglobins, such as those of Escherichia coli, Salmonella, and yeast, play vital roles in protection of these microorganisms in vitro from nitric oxide (NO) and nitrosative stress. A Salmonella hmp mutant defective in flavohemoglobin (Hmp) synthesis exhibits growth that is hypersensitive to nitrosating agents. We found that respiration of this mutant exhibited increased inhibition by NO, whereas wild-type cells pregrown with sodium nitroprusside or S-nitrosoglutathione showed enhanced tolerance of NO. Most significantly, hmp mutants internalized by primary human peripheral monocyte-derived macrophages survived phagocytosis relatively poorly compared with similarly bound and internalized wild-type cells. That the enhanced sensitivity to macrophage microbicidal activity is due primarily to the failure of Salmonella to detoxify NO was suggested by the ability of L-N(G)-monomethyl arginine-an inhibitor of NO synthase-to eliminate the difference in killing between wild-type and hmp mutant Salmonella cells. These observations suggest that Salmonella Hmp contributes to protection from NO-mediated inhibition by human macrophages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC128135 | PMC |
http://dx.doi.org/10.1128/IAI.70.8.4399-4405.2002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!