Two common pathogens known to cause bone infection, Salmonella and Staphylococcus aureus, were investigated to determine their abilities to induce chemokine expression in cultured mouse and human osteoblasts. While these cells are responsible for bone formation, we were surprised to find that they could respond to bacterial infection by upregulating expression of the chemokine CXCL10 (IP-10). However, there were significant differences in the abilities of the gram-negative bacterium Salmonella and the gram-positive bacterium S. aureus to induce expression of CXCL10. Reverse transcription-PCR and enzyme-linked immunosorbent assay analyses showed high levels of Salmonella-induced CXCL10 mRNA and protein expression, respectively, whereas the osteoblast response to S. aureus was significantly less. Consistent with these findings, Salmonella-derived lipopolysaccharide (LPS), but not S. aureus-derived peptidoglycan, could induce expression of CXCL10. An antibody against toll-like receptor 4 (TLR4) could block the LPS-induced CXCL10 production, demonstrating the functional expression of TLR4 by osteoblasts. Despite the inducible nature of TLR2 mRNA expression by bacterium-infected osteoblasts, peptidoglycan failed to stimulate CXCL10 secretion. Immunofluorescent staining of bacterium-infected calvaria (i.e., skull bone) demonstrated the presence of CXCL10 in osteoblasts. The fact that osteoblasts did not express CXCR3 mRNA, whereas T lymphocytes can express high levels of this receptor, suggests that osteoblast-derived CXCL10 may recruit T lymphocytes to the sites of bone infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC128159PMC
http://dx.doi.org/10.1128/IAI.70.8.4075-4082.2002DOI Listing

Publication Analysis

Top Keywords

cxcl10 secretion
8
toll-like receptor
8
cxcl10
8
induce expression
8
expression cxcl10
8
high levels
8
expression
7
osteoblasts
6
bacterium-induced cxcl10
4
secretion osteoblasts
4

Similar Publications

CircPRKD3-loaded exosomes concomitantly elicit tumor growth inhibition and glioblastoma microenvironment remodeling via inhibiting STAT3 signaling.

Neuro Oncol

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.

View Article and Find Full Text PDF

Understanding microbial-host interactions in the oral cavity is essential for elucidating oral disease pathogenesis and its systemic implications. bacteria-host cell coculture models have enabled fundamental studies to characterize bacterial infection and host responses in a reductionist yet reproducible manner. However, existing coculture models fail to replicate the physiological oxygen gradients critical for studying these interactions.

View Article and Find Full Text PDF

Infant respiratory infections modulate lymphocyte homing to breast milk.

Front Immunol

January 2025

Laboratorio de Pediatria Clinica (LIM36), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.

Introduction: Chemokines and their receptors are essential for leukocyte migration to several tissues, including human milk. Here, we evaluated the homing of T and B lymphocyte subsets to breast milk in response to ongoing respiratory infections in the nursing infant.

Methods: Blood and mature milk were collected from healthy mothers of nurslings with respiratory infections (Group I) and from healthy mothers of healthy nurslings (Group C).

View Article and Find Full Text PDF

In cutaneous melanoma, epigenetic dysregulation is implicated in drug resistance and tumor immune escape. However, the epigenetic mechanisms that influence immune escape remain poorly understood. To elucidate how epigenetic dysregulation alters the expression of surface proteins that may be involved in drug targeting and immune escape, we performed a 3-dimensional surfaceome screen in primary melanoma cultures and identified the DNA-methyltransferase inhibitor decitabine as significantly upregulating the costimulatory molecule ICAM-1.

View Article and Find Full Text PDF

Interferon-Stimulated Genes and Immune Metabolites as Broad-Spectrum Biomarkers for Viral Infections.

Viruses

January 2025

Center for Virus-Host-Innate-Immunity, Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.

The type I interferon (IFN-I) response is a critical component of the immune defense against various viral pathogens, triggering the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs encode proteins with diverse antiviral functions, targeting various stages of viral replication and restricting infection spread. Beyond their antiviral functions, ISGs and associated immune metabolites have emerged as promising broad-spectrum biomarkers that can differentiate viral infections from other conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!