Molecular mechanics and dynamics of biomolecules using a solvent continuum model.

J Comput Chem

Dipartimento Scientifico e Tecnologico, Universita' di Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy.

Published: November 2001

An easy implementation of molecular mechanics and molecular dynamics simulation using a continuum solvent model is presented that is particularly suitable for biomolecular simulations. The computation of solvation forces is made using the linear Poisson-Boltzmann equation (polar contribution) and the solvent-accessible surface area approach (nonpolar contribution). The feasibility of the methodology is demonstrated on a small protein and a small DNA hairpin. Although the parameters employed in this model must be refined to gain reliability, the performance of the method, with a standard choice of parameters, is comparable with results obtained by explicit water simulations. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1830-1842, 2001

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.1134DOI Listing

Publication Analysis

Top Keywords

molecular mechanics
8
mechanics dynamics
4
dynamics biomolecules
4
biomolecules solvent
4
solvent continuum
4
continuum model
4
model easy
4
easy implementation
4
implementation molecular
4
mechanics molecular
4

Similar Publications

A Dual-Pathway Responsive Mechanophore for Intelligent Luminescent Polymer Materials.

J Am Chem Soc

January 2025

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.

Mechanoluminescent units, when integrated into polymer matrices, undergo structural transformations in response to mechanical force, resulting in changes in fluorescence. This phenomenon holds considerable promise for the development of stress-sensing materials. Despite the high demand for robust, tunable mechanoluminescent mechanophores for force assessment and smart force-responsive materials, strategies for their design and synthesis remain underdeveloped.

View Article and Find Full Text PDF

Melatonin antagonizes bone loss induced by mechanical unloading via IGF2BP1-dependent mA regulation.

Cell Mol Life Sci

January 2025

The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.

Disuse bone loss is prone to occur in individuals who lack mechanical stimulation due to prolonged spaceflight or extended bed rest, rendering them susceptible to fractures and placing an enormous burden on social care; nevertheless, the underlying molecular mechanisms of bone loss caused by mechanical unloading have not been fully elucidated. Numerous studies have focused on the epigenetic regulation of disuse bone loss; yet limited research has been conducted on the impact of RNA modification bone formation in response to mechanical unloading conditions. In this study, we discovered that mA reader IGF2BP1 was downregulated in both osteoblasts treated with 2D clinostat and bone tissue in HLU mice.

View Article and Find Full Text PDF

Nanomechanical responses (force-time profiles) of crystal lattices under deformation exhibit random critical jumps, reflecting the underlying structural transition processes. Despite extensive data collection, interpreting dynamic critical responses and their underlying mechanisms remains a significant challenge. This study explores a microscopic theoretical approach to analyse critical force fluctuations in martensitic transitions.

View Article and Find Full Text PDF

Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning.

Sci Rep

January 2025

Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76344, Germany.

Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.

View Article and Find Full Text PDF

Background: Chronic neuropathic pain generally has a poor response to treatment with conventional drugs. Sympathectomy can alleviate neuropathic pain in some patients, suggesting that abnormal sympathetic-somatosensory signaling interactions might underlie some forms of neuropathic pain. The molecular mechanisms underlying sympathetic-somatosensory interactions in neuropathic pain remain obscure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!