A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distance and exposure dependent effective dielectric function. | LitMetric

Distance and exposure dependent effective dielectric function.

J Comput Chem

Department of Chemistry, City College of CUNY, Convent Avenue & 138th Street, New York, New York 10031, USA.

Published: August 2002

In an effort to develop a dielectric screening function for molecular dynamics simulations of biomolecules in implicit solvent, effective dielectric constants (D(eff)) for a large number of atom pairs in a typical globular protein are calculated by continuum electrostatics. Plots of D(eff) versus the intercharge distance are in general sigmoidal with the characteristics of the curve depending on the distance of the two charges from the dielectric boundary and, secondarily, on the extent to which the area surrounding each charge is occupied by solvent (the "exposure"). The D(eff) values were fitted to an empirical, analytical function of these parameters that reproduces the data reasonably well, although considerable scatter exists in the range of D(eff) from 30 to 80. In the system used for parameterization, the mean square deviation of electrostatic interaction energies with this function is 0.48 kcal/mol, compared to 1.45 for an analytical Generalized Born model and 1.52 for the linear distance-dependent dielectric model. When tested in other proteins of varying size and compactness, the present function is superior to both of the above models, except for a fully unfolded polypeptide chain, where the Generalized Born model is superior.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.10104DOI Listing

Publication Analysis

Top Keywords

effective dielectric
8
generalized born
8
born model
8
dielectric
5
function
5
distance exposure
4
exposure dependent
4
dependent effective
4
dielectric function
4
function effort
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!