We have developed a highly versatile platform that performs temperature gradient capillary electrophoresis (TGCE) for mutation/single-nucleotide polymorphism (SNP) detection, sequencing and mutation/SNP genotyping for identification of sequence variants on an automated 24-, 96- or 192-capillary array instrument. In the first mode, multiple DNA samples consisting of homoduplexes and heteroduplexes are separated by CE, during which a temperature gradient is applied that covers all possible temperatures of 50% melting equilibrium (Tms) for the samples. The differences in Tms result in separation of homoduplexes from heteroduplexes, thereby identifying the presence of DNA variants. The sequencing mode is then used to determine the exact location of the mutation/SNPs in the DNA variants. The first two modes allow the rapid identification of variants from the screening of a large number of samples. Only the variants need to be sequenced. The third mode utilizes multiplexed single-base extensions (SBEs) to survey mutations and SNPs at the known sites of DNA sequence. The TGCE approach combined with sequencing and SBE is fast and cost-effective for high-throughput mutation/SNP detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1522-2683(200205)23:10<1499::AID-ELPS1499>3.0.CO;2-X | DOI Listing |
Sci Rep
January 2025
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15.
View Article and Find Full Text PDFMob DNA
January 2025
Department of Biology, La Sierra University, Riverside, CA, USA.
Background: Messenger RNA 3' untranslated regions (3'UTRs) control many aspects of gene expression and determine where the transcript will terminate. The polyadenylation signal (PAS) AAUAAA (AATAAA in DNA) is a key regulator of transcript termination and this hexamer, or a similar sequence, is very frequently found within 30 bp of 3'UTR ends. Short interspersed element (SINE) retrotransposons are found throughout genomes in high copy numbers.
View Article and Find Full Text PDFGenomics
January 2025
Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, PR China. Electronic address:
The spatiotemporal-specific gene expression is regulated by cell-type-specific regulatory elements. Here we selected the H3K4me1-associated DNA sequences as candidate enhancers in two different human cell lines and performed ChIP-STARR-seq to quantify the cell-type-specific enhancer activities with high-resolution. We investigated how the activity landscape of enhancer repository would change when transferred from native cells (cis activity) to another cell lines (trans activity).
View Article and Find Full Text PDFBiophys Rep (N Y)
January 2025
Department of Chemistry and Biochemistry, University of California Merced, Merced, 95343; Department of Chemistry, Syracuse University, Syracuse, 13244.
Transcription factor proteins bind to specific DNA promoter sequences and initiate gene transcription. These proteins often contain intrinsically disordered activation domains (ADs) that regulate their transcriptional activity. Like other disordered protein regions, ADs do not have a fixed three-dimensional structure and instead exist in an ensemble of conformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!