VLDL-resembling phospholipid-submicron emulsion for cholesterol-based drug targeting.

J Pharm Sci

Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Univesity of Georgia, Athens 30602, USA.

Published: June 2002

The objective of the current study was to develop and evaluate VLDL-resembling phospholipid-submicron emulsion (PSME) as a carrier system for new cholesterol-based compounds for targeted delivery to cancer cells. BCH, a boronated cholesterol compound, was originally developed in our laboratory to mimic the cholesterol esters present in the LDL and to follow a similar pathway of cholesterol transport into the rapidly dividing cancer cells. The VLDL-resembling system was then designed to solubilize BCH, facilitate the interaction with LDL, and thus assist the BCH delivery to cancer cells. BCH-containing PSME was prepared by sonication. Chemical compositions and particle sizes of different PSME fractions were determined. The lipid structure of PSME and location of BCH in the formulation were assessed based on experimental results. Density gradient ultracentrifugation fractionated the emulsion into three particle-size populations with structures and compositions resembling native VLDL. In vitro interaction between PSME and LDL was evident by agarose electrophoresis, as both formed a single band with an intermediate mobility. The transfer of BCH from PSME to LDL was also observed in the presence of other serum components including serum proteins. Cell culture data showed sufficient uptake of BCH in rat 9L glioma cells (> 50 microg boron/g cells). In conclusion, this system has the capability to incorporate the cholesterol-based compound, interact with native LDL, and assist the delivery of this compound into cancer cells in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.10117DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
vldl-resembling phospholipid-submicron
8
phospholipid-submicron emulsion
8
delivery cancer
8
ldl assist
8
psme ldl
8
psme
6
cells
6
bch
6
ldl
5

Similar Publications

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).

View Article and Find Full Text PDF

Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Hereditary diffuse gastric cancer is characterized by an increased risk of diffuse gastric cancer and lobular breast cancer, and is caused by pathogenic germline variants of E-cadherin and -E-catenin, which are key regulators of cell-cell adhesion. However, how the loss of cell-cell adhesion promotes cell dissemination remains to be fully understood. Therefore, a three-dimensional computer model was developed to describe the initial steps of diffuse gastric cancer development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!