AI Article Synopsis

Article Abstract

The role of B cells and antibody in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) remains controversial. We previously demonstrated that B cells are required for EAE to be induced by the 120-amino acid extracellular domain of myelin oligodendrocyte glycoprotein (MOG). In the present study, the role of B cells in MOG-induced EAE was further characterized. Passive transfer of activated B cells or serum from MOG-primed wild-type (WT) mice was found to reconstitute the ability for clinical and histological EAE to be induced in MOG-immunized B cell-deficient mice. MOG-induced EAE did not occur with transfer of B cells that had been nonspecifically activated by lipopolysaccharide or isolated from naïve or myelin basic protein (MBP)-primed WT mice. Likewise, MOG-primed serum, but not naive serum or serum from MBP-, Hen egg lysozyme-, or MOG(35-55)-primed mice, led to EAE in B cell-/- animals. While both MOG-primed B cells and serum reconstituted the ability for disease induction, MOG-primed serum was much more efficient, leading to clinical and histological EAE similar to that seen in the WT. Injection of MOG serum into healthy B cell-/- mice 30 days after MOG immunization led to rapid appearance of clinical signs and CNS inflammation, indicating that an antigen-specific factor is necessary for initiation of CNS inflammation,and not just demyelination. These data strongly suggest that MOG-specific antibody is critical to the initiation of MOG-induced murine EAE.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1521-4141(200207)32:7<1905::AID-IMMU1905>3.0.CO;2-LDOI Listing

Publication Analysis

Top Keywords

experimental autoimmune
8
autoimmune encephalomyelitis
8
myelin oligodendrocyte
8
oligodendrocyte glycoprotein
8
role cells
8
eae
8
eae induced
8
mog-induced eae
8
cells serum
8
clinical histological
8

Similar Publications

Antibodies are extensively used in biomedical research, clinical fields, and disease treatment. However, to enhance the reproducibility and reliability of antibody-based experiments, it is crucial to have a detailed understanding of the antibody's target specificity and epitope. In this study, we developed a high-throughput and precise epitope analysis method, DECODE (Decoding Epitope Composition by Optimized-mRNA-display, Data analysis, and Expression sequencing).

View Article and Find Full Text PDF

This review describes mass spectrometry (MS)-based approaches for the absolute quantification of therapeutic monoclonal antibodies (mAbs), focusing on technical challenges in sample treatment and calibration. Therapeutic mAbs are crucial for treating cancer and inflammatory, infectious, and autoimmune diseases. We trace their development from hybridoma technology and the first murine mAbs in 1975 to today's chimeric and fully human mAbs.

View Article and Find Full Text PDF

: Anorexia nervosa (AN) is a complex psychiatric disorder characterized by an extreme fear of gaining weight, leading to severe calorie restriction and weight loss. Beyond its psychiatric challenges, AN has significant physical consequences affecting multiple organ systems. Recent research has increasingly focused on the interplay between autoantibodies, oxidative stress, and nutritional state in this condition.

View Article and Find Full Text PDF

Neutrophil extracellular traps potentiate effector T cells via endothelial senescence in uveitis.

JCI Insight

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China.

Autoimmune uveitis (AU) is a sight-threatening ocular autoimmune disorder that often manifests as retinal vasculitis. Increased neutrophil infiltration around retinal vessels has been reported during the progression of AU, while how they function is not fully recognized. Neutrophil extracellular traps (NETs), produced by activated neutrophils, have been suggested to be detrimental in autoimmune diseases.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and progressive joint destruction. Neutrophil extracellular traps (NETs), a microreticular structure formed after neutrophil death, have recently been implicated in RA pathogenesis and pathological mechanisms. However, the underlying molecular mechanisms and key genes involved in NET formation in RA remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!