The hypusine biosynthetic steps represent novel targets for intervention in cell proliferation. Hypusine is a rare amino acid, formed posttranslationally in one cellular protein, eIF5A, and is essential for cell proliferation. Deoxyhypusine hydroxylase, the metalloenzyme catalyzing the final step in hypusine biosynthesis, and prolyl 4-hydroxylase, a non-heme iron enzyme critical for collagen processing, can be inhibited by small chelating molecules that target their essential metal atom. We examined the effects of 5 compounds (ciclopirox, deferiprone, deferoxamine, mimosine and 2,2'-dipyridyl) on these protein hydroxylases in HUVECs, on cell proliferation and on angiogenesis using 2 model assays: tube-like vessel formation on Matrigel and the chick aortic arch sprouting assay. These compounds inhibited cellular deoxyhypusine hydroxylase in a concentration-dependent manner, but their efficacy varied widely in the following order: ciclopirox--> deferoxamine-->2,2'-dipyridyl-->deferiprone-->mimosine (IC(50) 5-200 microM). Inhibition of DNA synthesis, following the same order (IC(50) 10-450 microM), correlated with G(1) arrest of the cell cycle. These compounds also inhibited proline hydroxylation and maturation of collagen in HUVECs and caused inhibition of angiogenesis in vitro. Of the compounds tested, ciclopirox was by far the most effective inhibitor of HUVEC proliferation and angiogenesis. The strong antiangiogenic activity of this readily available antifungal drug along with its antiproliferative effects suggests a new potential application for ciclopirox in the treatment of solid tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.10515 | DOI Listing |
Arab J Gastroenterol
January 2025
Department of Pediatric Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430015, China.
Background And Study Aims: Hirschsprung disease (HD) is a complex developmental disease that resulted from impaired proliferation and migration of neural crest cells. Despite the genetic causation of enteric nervous system have been found to be responsible for part of HD cases, the genetic aetiology of most HD patients still needs to be explored.
Patients And Methods: Whole-genome sequencing and subsequent Sanger sequencing validation analysis were performed in 13 HD children and their unaffected parents.
J Adv Res
January 2025
Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022 People's Republic of China. Electronic address:
Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.
Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.
Life Sci
January 2025
Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. Electronic address:
Aims: Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy (LVH) with key pathologic processes including myocardial necrosis, fibrosis, inflammation, and hypertrophy, which are involved in heart failure (HF), stroke, and even sudden death. Our aim was to explore the communication network among various cells in the heart of transverse aortic constriction (TAC) surgery induced HCM mice.
Materials And Methods: Single-cell RNA-seq data of GSE137167 was downloaded from the Gene Expression Omnibus (GEO) database.
Int J Biol Macromol
January 2025
Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India. Electronic address:
Plant based medicine is gaining recognition as a complementary approach to conventional treatments. Plants contain lectins that bind to carbohydrates and exhibit various biological properties and being used in cancer treatment. In present investigation Cordia myxa fruit was chosen, screen for presence of lectin and explore its biological role.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou 318000, China. Electronic address:
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by recurrent eczematous lesions and severe itching, for which clinical treatments are limited. Selectively inhibiting Janus Kinase 3 (JAK3) and tyrosine kinase expressed in hepatocellular carcinoma (TEC) family kinases is proposed as a promising strategy to treat AD with possible reduced side effects and enhanced efficacy. In this study, we developed a dual JAK3/TEC family kinase inhibitor ZZB, which demonstrated potent inhibitory activity with IC values of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!