A new hydrophobic and catalytic membrane was prepared by immobilizing Penicillin G acylase (PGA, EC.3.5.1.11) from E. coli on a nylon membrane, chemically grafted with butylmethacrylate (BMA). Hexamethylenediamine (HMDA) and glutaraldehyde (Glu) were used as a spacer and coupling agent, respectively. PGA was used for the enzymatic synthesis of cephalexin, using D(-)-phenylglycine methyl ester (PGME) and 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) as substrates. Several factors affecting this reaction, such as pH, temperature, and concentrations of substrates were investigated. The results indicated good enzyme-binding efficiency of the pre-treated membrane, and an increased stability of the immobilized PGA towards pH and temperature. Calculation of the activation energies showed that cephalexin production by the immobilized biocatalyst was limited by diffusion, resulting in a decrease of enzyme activity and substrate affinity. Temperature gradients were employed as a way to reduce the effects of diffusion limitation. Cephalexin was found to linearly increase with the applied temperature gradient. A temperature difference of about 3 degrees C across the catalytic membrane resulted into a cephalexin synthesis increase of 100% with a 50% reduction of the production times. The advantage of using non-isothermal bioreactors in biotechnological processes, including pharmaceutical applications, is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.10303 | DOI Listing |
Phys Chem Chem Phys
September 2023
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
The effects of the structural units and blending ratio on the crystallization behavior of blends of polyamide 4 (PA4) with polyamide 56 (PA56) and polyamide 11 (PA11) were studied using molecular dynamics simulations and non-isothermal crystallization kinetics. The simulation results show that the crystallinity of PA4/PA56 blends (B4/56) with a PA56 content of 30-50% was 3.5-10.
View Article and Find Full Text PDFBioresour Technol
March 2022
Department of Mechanical Engineering, Tafila Technical University, Tafila, Jordan.
Design for fermentation bioreactor controllers is challenged by the nonlinear process kinetics and the lack of online measurements for key variables. This work developed a multi-input, multi-output advanced nonlinear control structure for a continuous, non-isothermal, constant volume fermentation bioreactor. Utilizing feedback linearization control for the bioreactor feed to regulate glucose concentration, and backstepping control for the cooling jacket feed to regulate reactor temperature.
View Article and Find Full Text PDFJ Environ Manage
March 2022
Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
In thermal hydrolysis (TH) of waste activated sludge (WAS), the material transformation of a specific temperature heating for a set duration is generally examined. However, this study looked at the material changes of TH as the temperature rose (90-210 °C) and the kinetic derivation of soluble chemical oxygen demand (SCOD), protein, and carbohydrate using the Coats-Redfern model. It was found that the proportion of soluble protein and soluble carbohydrate in the organic components and their contents reached the maximum (17.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2020
Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León, Spain.
The coupling of biological and thermal technologies allows for the complete conversion of wastes into energy and biochar eliminating the problem of sludge disposal. The valorisation of fatty residues as co-substrate in a mesophilic digester of a wastewater treatment plant was studied considering an integrated approach of co-digestion and pyrolysis. Four digested samples obtained from co-digestion of sewage sludge and butcher's fat waste were studied by thermogravimetric analysis.
View Article and Find Full Text PDFWaste Manag
April 2019
College of Engineering, Northeast Agricultural University, Harbin 150030, China.
Energy utilization efficiency of heating for the operation process of biogas reactor is an important factor limiting its development and popularization. A novel mode of solar radiant heating combined with the conventional heating mode was proposed to reduce the power loss and improve the utilization cycle of heat exchanger. In present work, experimental and numerical researches about the anaerobic fermentation process under two heating modes were made to investigate the effect of temperature fluctuation on non-isothermal fermentation process under solar radiant heating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!