A tissue-engineering model for the manufacture of auricular-shaped cartilage implants.

Eur Arch Otorhinolaryngol

Department of Otorhinolaryngology, University Medical Center Benjamin Franklin, FU Berlin, Hindenburgdamm 30, 12200 Berlin, Germany.

Published: July 2002

AI Article Synopsis

  • Current surgical techniques for ear reconstruction using natural tissue often lead to unsatisfactory cosmetic results due to the limitations of conventional rib cartilage shaping.
  • Tissue engineering offers an innovative solution by enabling the creation of precise cartilage implants without the drawbacks of donor site complications.
  • In this study, researchers successfully developed auricular-shaped cartilage implants using human cells and bioresorbable scaffolds, demonstrating effective tissue formation and stability over time in preclinical experiments.

Article Abstract

The established surgical methods of external ear reconstruction using autogenous tissue represent the current state of the art. Because of the limited possibilities for shaping conventional harvested autogenous rib cartilage, the cosmetic results of auricular reconstruction are frequently unsatisfactory. Tissue engineering could represent an alternative technique for obtaining a precisely shaped cartilage implant that avoids donor site morbidity and unsatisfactory cosmetic results. In this study, the reliability and quality of a tissue-engineering model for the manufacture of auricular-shaped human cartilage implants was investigated, focusing on the feasibility of the manufacturing process and the in vivo and in vitro maturation of an extracellular cartilage-like matrix. Implants were molded within an auricular-shaped silicone cylinder, and human nasal septal chondrocytes crosslinked by human fibrin within bioresorbable PGLA-PLLA polymer scaffolds were used. After an in vitro incubation of up to 6 weeks, defined fragments of the prefabricated auricular-shaped construct were implanted subcutaneously on the backs of nude mice for at least 6 to 12 weeks ( n=7). Scaffolds without cell loading served as controls. Macroscopic and histochemical examination after 3 and 6 weeks in vitro showed a solid compound of homogenously distributed chondrocytes within the polymer scaffold, leading only to a limited pericellular matrix formation. Analysis after 6 and 12 weeks of in vivo maturation demonstrated a solid tissue compound and neocartilage formation with the presence of cartilage-specific matrix components. Implants obtained shape and size during the entire period of implantation. The model of cartilage implant manufacturing presented here meets all biocompatible requirements for in vitro prefabrication and in vivo maturation of autogenous, individually shaped cartilage transplants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00405-002-0446-1DOI Listing

Publication Analysis

Top Keywords

tissue-engineering model
8
model manufacture
8
manufacture auricular-shaped
8
cartilage implants
8
shaped cartilage
8
cartilage implant
8
vivo maturation
8
cartilage
6
auricular-shaped
4
auricular-shaped cartilage
4

Similar Publications

"Suspended" Single Rhenium Atoms on Nickel Oxide for Efficient Electrochemical Oxidation of Glucose.

J Am Chem Soc

January 2025

CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re-phen/NiO).

View Article and Find Full Text PDF

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Multimodal imaging of murine cerebrovascular dynamics induced by transcranial pulse stimulation.

Alzheimers Dement

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.

Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.

View Article and Find Full Text PDF

Effect of curcumin-loaded polycaprolactone scaffold on Achilles tendon repair in rats.

Vet Res Forum

November 2024

Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

Scaffolds play a crucial role in tendon healing by providing structural support, promoting cell infiltration, and guiding tissue regeneration. Polycaprolactone (PCL) has been used as a polymer in biological scaffolds for several tissue engineering studies. This study aimed to investigate the effects of curcumin-loaded PCL scaffold on Achilles tendon using a tenotomy model in rats.

View Article and Find Full Text PDF

Diabetic keratopathy (DK), a significant complication of diabetes, often leads to corneal damage and vision impairment. Effective models are essential for studying DK pathogenesis and evaluating potential therapeutic interventions. This study developed a novel biomimetic full-thickness corneal model for the first time, incorporating corneal epithelial cells, stromal cells, endothelial cells, and nerves to simulate DK conditions .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!