Pituitary changes in the case of a 69-year-old man with hemochromatosis are reported. The patient died of complications of hepatocellular carcinoma. The pituitary removed at autopsy was studied by histology, histochemistry, immunocytochemistry, electron microscopy, and X-ray diffraction. Preferential localization of iron deposits was demonstrated within gonadotrophs, which, at the ultrastructural level, displayed selective, severe cellular injury. X-ray diffraction revealed the deposition of iron-accumulated lysosomes. Iron storage also was noted in stellate cells. We consider selective injury of pituitary gonadotrophs to be the basis of hypogonadism in iron-overloaded states.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02739976DOI Listing

Publication Analysis

Top Keywords

x-ray diffraction
8
anterior pituitary
4
pituitary hemochromatosis
4
hemochromatosis pituitary
4
pituitary changes
4
changes case
4
case 69-year-old
4
69-year-old man
4
man hemochromatosis
4
hemochromatosis reported
4

Similar Publications

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.

View Article and Find Full Text PDF

A Compendium of Magnetic Nanoparticle Essentials: A Comprehensive Guide for Beginners and Experts.

Pharmaceutics

January 2025

Physics Department and i3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.

Magnetic nanoparticles (MNPs) are advanced materials that combine the unique properties of magnetic materials and nanoscale dimensions, enabling a wide range of applications in biomedicine, environmental science, and information technology. This review provides a comprehensive yet accessible introduction to the fundamental principles, characterization techniques, and diverse applications of MNPs, with a focus on their nanoscale magnetic properties, such as superparamagnetism, single-domain behavior, and surface effects. It also delves into their classification and the critical role of parameters like magnetic anisotropy and blocking temperature.

View Article and Find Full Text PDF

This study explores the development and characterization of lyophilized chondroitin sulfate (CHON)-loaded solid lipid nanoparticles (SLN) as an innovative platform for advanced drug delivery. Solid lipid nanoparticles are increasingly recognized for their biocompatibility, their ability to encapsulate diverse compounds, their capacity to enhance drug stability, their bioavailability, and their therapeutic efficacy. CHON, a naturally occurring glycosaminoglycan with anti-inflammatory and regenerative properties, was integrated into SLN formulations using the hot microemulsion technique.

View Article and Find Full Text PDF

Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!