SQUAMOSA and APETALA1 are floral meristem identity genes from snapdragon (Antirrhinum majus) and Arabidopsis, respectively. Here, we characterize the floral meristem identity mutation proliferating inflorescence meristem (pim) from pea (Pisum sativum) and show that it corresponds to a defect in the PEAM4 gene, a homolog of SQUAMOSA and APETALA1. The PEAM4 coding region was deleted in the pim-1 allele, and this deletion cosegregated with the pim-1 mutant phenotype. The pim-2 allele carried a nucleotide substitution at a predicted 5' splice site that resulted in mis-splicing of pim-2 mRNA. PCR products corresponding to unspliced and exon-skipped mRNA species were observed. The pim-1 and pim-2 mutations delayed floral meristem specification and altered floral morphology significantly but had no observable effect on vegetative development. These floral-specific mutant phenotypes and the restriction of PIM gene expression to flowers contrast with other known floral meristem genes in pea that additionally affect vegetative development. The identification of PIM provides an opportunity to compare pathways to flowering in species with different inflorescence architectures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166509PMC
http://dx.doi.org/10.1104/pp.001677DOI Listing

Publication Analysis

Top Keywords

floral meristem
20
meristem identity
12
proliferating inflorescence
8
inflorescence meristem
8
squamosa apetala1
8
vegetative development
8
meristem
7
floral
6
meristem mads-box
4
mads-box gene
4

Similar Publications

The role of Ancestral MicroRNAs in grass inflorescence development.

J Plant Physiol

December 2024

Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated GhFT-targeted mutagenesis prolongs indeterminate growth and alters plant architecture in cotton.

Plant Sci

December 2024

Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, Anhui 239000, China. Electronic address:

The shift from vegetative to reproductive growth is an important developmental transition that affects flowering and maturation, architecture, and ecological adaptability in plants. The florigen-antiflorigen system universally controls flowering and plant architecture, and changes to the ratio of these components alter this transition and disrupt growth. The genes FT (FLOWERING LOCUS T), encoding the florigen protein FT, and CETS [CENTRORADIALIS (CEN)/TERMINAL FLOWER1 (TFL1)/SELF-PRUNING (SP)], encoding antiflorigen proteins, have opposing roles.

View Article and Find Full Text PDF
Article Synopsis
  • In warm winters caused by climate change, early flowering of autumn-sown wheat needs to be suppressed to maintain yield.
  • Alloplasmic lines of wheat, which incorporate cytoplasm from wild relatives, show delayed flowering compared to standard lines, indicating potential benefits for crop management.
  • Studies reveal that these alloplasmic lines express genes differently after cold exposure, suggesting they could maintain tiller numbers and yields in warmer conditions, making them valuable for breeding future wheat varieties.
View Article and Find Full Text PDF

We describe transcriptional dynamics at the rice shoot apex by integrating time resolved single nuclei RNA-seq with bulk RNA-seq data. In rice, short days trigger floral transition and the transcriptional reprogramming of the shoot apex to become reproductive. We integrated time-resolved bulk RNA-seq with single nuclei RNA-seq analysis to gain a refined understanding of the transcriptional programs induced at the shoot apex during floral transition.

View Article and Find Full Text PDF

KNUCKLES regulates floral meristem termination by controlling auxin distribution and cytokinin activity.

Plant Cell

December 2024

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.

The termination of floral meristem (FM) activity is essential for the normal development of reproductive floral organs. During this process, KNUCKLES (KNU), a C2H2-type zinc finger protein, crucially regulates FM termination by directly repressing the expression of both the stem cell identity gene WUSCHEL (WUS) and the stem cell marker gene CLAVATA3 (CLV3) to abolish the WUS-CLV3 feedback loop required for FM maintenance. In addition, phytohormones auxin and cytokinin are involved in FM regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!