We showed previously that protein kinase C (PKC) is required for phagocytosis of apoptotic leukocytes by murine alveolar (AMø) and peritoneal macrophages (PMø) and that such phagocytosis is markedly lower in AMø compared with PMø. In this study, we examined the roles of individual PKC isoforms in phagocytosis of apoptotic thymocytes by these two Mø populations. By immunoblotting, AMø expressed equivalent PKC eta but lower amounts of other isoforms (alpha, betaI, betaII, delta, epsilon, mu, and zeta), with the greatest difference in betaII expression. A requirement for PKC betaII for phagocytosis was demonstrated collectively by phorbol 12-myristate 13-acetate-induced depletion of PKC betaII, by dose-response to PKC inhibitor Ro-32-0432, and by use of PKC betaII myristoylated peptide as a blocker. Exposure of PMø to phosphatidylserine (PS) liposomes specifically induced translocation of PKC betaII and other isoforms to membranes and cytoskeleton. Both AMø and PMø expressed functional PS receptor, blockade of which inhibited PKC betaII translocation. Our results indicate that murine tissue Mø require PKC betaII for phagocytosis of apoptotic cells, which differs from the PKC isoform requirement previously described in Mø phagocytosis of other particles, and imply that a crucial action of the PS receptor in this process is PKC betaII activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2640489 | PMC |
http://dx.doi.org/10.1074/jbc.M202967200 | DOI Listing |
Biochem Pharmacol
December 2024
Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK. Electronic address:
Epoxytiglianes are a novel class of diterpene esters. The prototype epoxytigliane, EBC-46 (tigilanol tiglate), is a potent anti-cancer agent in clinical development for local treatment of a range of human and animal tumors. EBC-46 also consistently promotes wound re-epithelialization at the treatment sites, mediated via activation of classical protein kinase C (PKC) isoforms.
View Article and Find Full Text PDFElife
April 2024
Department of Biochemistry & Biophysics, Texas A&M University, College Station, United States.
Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1.
View Article and Find Full Text PDFRegulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1.
View Article and Find Full Text PDFJ Chin Med Assoc
October 2023
Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
Background: Progesterone-stimulated rapid suppression of phytohemagglutinin (PHA)-activated sustained membrane Ca 2+ influx is revealed by Mn 2+ quenching fura-2 fluorescence. Ca 2+ influx suppression results in immunosuppression of T-cell proliferation. Downregulation of protein kinase C (PKC) activity by phorbol 12-myristate 13-acetate (PMA) enhances the PHA-activated increase in sustained intracellular Ca 2+ concentration ([Ca 2+ ] i ) via Ca 2+ influx in T cells.
View Article and Find Full Text PDFReprod Biol
June 2023
Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India. Electronic address:
We investigated the role of protein kinase c (PKC) -α and -β during the ovarian follicular dynamics using estrous cycle, gonadotropin-induced ovulation, and antral follicle culture, 4-vinylcyclohexene diepoxide (VCD)-induced premature ovarian failure (POF) in the SD rat models. We found the higher activity of PKC during the proestrus stage along with expression of PKC-α during the estrus and metestrus stages of the estrous cycle while PKC-β expression was increased during the diestrus, proestrus, and estrus stages. In response to pregnant mare gonadotropin (PMSG)-induced follicular recruitment and ovulation, the phosphorylated (Thr-642) PKC-β was increased.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!