Collagen degradation is required for the creation of new integrin binding sites necessary for cell survival. However, a complete separation between the matrix and the cell leads to apoptosis, dilatation, and failure. Previous studies have demonstrated increased metalloproteinase activity in the failing myocardium. To test the hypothesis that disintegrin metalloproteinase (DMP) is induced in human heart end-stage failure, left ventricle tissue from ischemic cardiomyopathic (ICM, n = 10) and dilated cardiomyopathic (DCM, n = 10) human hearts were obtained at the time of orthotopic cardiac transplant. Normal (n = 5) tissue specimens were obtained from unused hearts. The levels of reduced oxygen species (ROS) were 12 +/- 2, 25 +/- 3, and 16 +/- 2 nmol (means +/- SE, P < 0.005) in normal, ICM, and DCM, respectively, by spectrofluorometry. The percent levels of endothelial cells were 100 +/- 15, 35 +/- 19, and 55 +/- 11 in normal, ICM, and DCM, respectively, by CD31 labeling. The levels of nitrotyrosine by Western analysis were significantly increased, and endothelial nitric oxide (NO) by the Griess method was decreased in ICM and DCM compared with normal tissue. The synthesis and degradation of beta(1)-integrin and connexin 43 were significantly increased in ICM and DCM compared with normal hearts by Western analysis. Levels of DMP were increased, and levels of cardiac inhibitor of metalloproteinase (CIMP) were decreased. Aggrecanase activity of DMP was significantly increased in ICM and DCM hearts compared with normal. These results suggest that the occurrence of cardiomyopathy is significantly confounded by the increase in ROS, nitrotyrosine, and DMP activity. This increase is associated with decreased NO, endothelial cell density, and CIMP. In vitro, treatment of CIMP abrogated the DMP activity. The treatment with CIMP may prevent degradation of integrin and connexin and ameliorate heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00001.2002DOI Listing

Publication Analysis

Top Keywords

icm dcm
20
+/- +/-
16
compared normal
12
disintegrin metalloproteinase
8
human heart
8
heart end-stage
8
end-stage failure
8
normal tissue
8
normal icm
8
western analysis
8

Similar Publications

Myocardial inflammation is associated with impaired mitochondrial oxidative capacity in ischaemic cardiomyopathy.

ESC Heart Fail

October 2024

Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.

Aims: Myocardial inflammation and impaired mitochondrial oxidative capacity are hallmarks of heart failure (HF) pathophysiology. The extent of myocardial inflammation in patients suffering from ischaemic cardiomyopathy (ICM) or dilated cardiomyopathy (DCM) and its association with mitochondrial energy metabolism are unknown. We aimed at establishing a relevant role of cardiac inflammation in the impairment of mitochondrial energy production in advanced ischaemic and non-ischaemic HF.

View Article and Find Full Text PDF
Article Synopsis
  • * It discusses the potential of using ECG signals analyzed through variational mode decomposition (VMD) as a less invasive alternative to the standard coronary angiography for differentiating between ICM and DCM.
  • * The study involved processing ECG data from 87 subjects, applying various analyses, and utilizing machine learning models to achieve an impressive classification accuracy of 98.30%, indicating that VMD is more effective than empirical mode decomposition (EMD) in this context.
View Article and Find Full Text PDF

Heart failure (HF) is associated with global changes in gene expression. Alternative mRNA splicing (AS) is a key regulatory mechanism underlying these changes. However, the whole status of molecules involved in the splicing process in human HF is unknown.

View Article and Find Full Text PDF

Background: Myocardial fibrosis, a hallmark of heart disease, is closely associated with macrophages, yet the genetic pathophysiology remains incompletely understood. In this study, we utilized integrated single-cell transcriptomics and bulk RNA-seq analysis to investigate the relationship between macrophages and myocardial fibrosis across omics integration.

Methods: We examined and curated existing single-cell data from dilated cardiomyopathy (DCM), ischemic cardiomyopathy (ICM), myocardial infarction (MI), and heart failure (HF), and analyzed the integrated data using cell communication, transcription factor identification, high dimensional weighted gene co-expression network analysis (hdWGCNA), and functional enrichment to elucidate the drivers of macrophage polarization and the macrophage-to-myofibroblast transition (MMT).

View Article and Find Full Text PDF

Background: Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) have similar clinical manifestations but differ in pathogenesis. We aimed to identify T cell-associated serum markers that can be used to distinguish between ICM and DCM.

Methods: We identified differentially expressed genes (DEGs) with transcriptome sequencing data in GSE116250, and then conducted enrichment analysis of DEGs in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!