Objective: Current surgical training programs in the United States are based on an apprenticeship model. This model is outdated because it does not provide conceptual scaffolding, promote collaborative learning, or offer constructive reinforcement. Our objective was to create a more useful approach by preparing students and residents for operative cases using interactive computer simulations of surgery. Total-knee-replacement surgery (TKR) is an ideal procedure to model on the computer because there is a systematic protocol for the procedure. Also, this protocol is difficult to learn by the apprenticeship model because of the multiple instruments that must be used in a specific order. We designed an interactive computer tutorial to teach medical students and residents how to perform knee-replacement surgery. We also aimed to reinforce the specific protocol of the operative procedure. Our final goal was to provide immediate, constructive feedback.

Description: We created a computer tutorial by generating three-dimensional wire-frame models of the surgical instruments. Next, we applied a surface to the wire-frame models using three-dimensional modeling. Finally, the three-dimensional models were animated to simulate the motions of an actual TKR. The tutorial is a step-by-step tutorial that teaches and tests the correct sequence of steps in a TKR. The student or resident must select the correct instruments in the correct order. The learner is encouraged to learn the stepwise surgical protocol through repetitive use of the computer simulation. Constructive feedback is acquired through a grading system, which rates the student's or resident's ability to perform the task in the correct order. The grading system also accounts for the time required to perform the simulated procedure. We evaluated the efficacy of this teaching technique by testing medical students who learned by the computer simulation and those who learned by reading the surgical protocol manual. Both groups then performed TKR on manufactured bone models using real instruments. Their technique was graded with the standard protocol. The students who learned on the computer simulation performed the task in a shorter time and with fewer errors than the control group. They were also more engaged in the learning process.

Discussion: Surgical training programs generally lack a consistent approach to preoperative education related to surgical procedures. This interactive computer tutorial has allowed us to make a quantum leap in medical student and resident teaching in our orthopedic department because the students actually participate in the entire process. Our technique provides a linear, sequential method of skill acquisition and direct feedback, which is ideally suited for learning stepwise surgical protocols. Since our initial evaluation has shown the efficacy of this program, we have implemented this teaching tool into our orthopedic curriculum. Our plans for future work with this simulator include modeling procedures involving other anatomic areas of interest, such as the hip and shoulder.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001888-200207000-00045DOI Listing

Publication Analysis

Top Keywords

interactive computer
16
computer tutorial
12
computer simulation
12
computer simulations
8
knee-replacement surgery
8
surgical training
8
training programs
8
apprenticeship model
8
students residents
8
computer
8

Similar Publications

Introduction: Gastric cancer (GC) is among the deadliest malignancies globally, characterized by hypoxia-driven pathways that promote cancer progression, including stemness mechanisms facilitating invasion and metastasis. This study aimed to develop a prognostic decision tree using genes implicated in hypoxia and stemness pathways to predict outcomes in GC patients.

Materials And Methods: GC RNA-seq data from The Cancer Genome Atlas (TCGA) were analyzed to compute hypoxia and stemness scores using Gene Set Variation Analysis (GSVA) and the mRNA expression-based stemness index (mRNAsi).

View Article and Find Full Text PDF

Objectives: Dementia, a growing concern globally, affects more than 55 million people-a number projected to rise to 152 million by 2050. Current medications target Alzheimer's disease, the most prevalent form of dementia. This study investigated L.

View Article and Find Full Text PDF

Enhancing the Travel Experience for People with Visual Impairments through Multimodal Interaction: NaviGPT, A Real-Time AI-Driven Mobile Navigation System.

GROUP ACM SIGCHI Int Conf Support Group Work

January 2025

College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania, USA.

Assistive technologies for people with visual impairments (PVI) have made significant advancements, particularly with the integration of artificial intelligence (AI) and real-time sensor technologies. However, current solutions often require PVI to switch between multiple apps and tools for tasks like image recognition, navigation, and obstacle detection, which can hinder a seamless and efficient user experience. In this paper, we present NaviGPT, a high-fidelity prototype that integrates LiDAR-based obstacle detection, vibration feedback, and large language model (LLM) responses to provide a comprehensive and real-time navigation aid for PVI.

View Article and Find Full Text PDF

Every protein progresses through a natural lifecycle from birth to maturation to death; this process is coordinated by the protein homeostasis system. Environmental or physiological conditions trigger pathways that maintain the homeostasis of the proteome. An open question is how these pathways are modulated to respond to the many stresses that an organism encounters during its lifetime.

View Article and Find Full Text PDF

Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!