Ground water chemistry data collected over a six-year period show that the distribution of contaminants and redox processes in a shallow petroleum hydrocarbon-contaminated aquifer has changed rapidly over time. Shortly after a gasoline release occurred in 1990, high concentrations of benzene were present near the contaminant source area. In this contaminated zone, dissolved oxygen in ground water was depleted, and by 1994 Fe(III) reduction and sulfate reduction were the predominant terminal electron accepting processes. Significantly, dissolved methane was below measurable levels in 1994, indicating the absence of significant methanogenesis. By 1996, however, depletion of solid-phase Fe(III)-oxyhydrox ides in aquifer sediments and depletion of dissolved sulfate in ground water resulted in the onset of methanogenesis. Between 1996 and 2000, water-chemistry data indicated that methanogenic metabolism became increasingly prevalent. Molecular analysis of 16S-rDNA extracted from sediments shows the presence of a more diverse methanogenic community inside as opposed to outside the plume core, and is consistent with water-chemistry data indicating a shift toward methanogenesis over time. This rapid evolution of redox processes reflects several factors including the large amounts of contaminants, relatively rapid ground water flow (approximately 0.3 m/day [approximately foot/day]), and low concentrations of microbially reducible Fe(III) oxyhydroxides ( approximately 1 micromol/g) initially present in aquifer sediments. These results illustrate that, under certain hydrologic conditions, redox conditions in petroleum hydrocarbon-contaminated aquifers can change rapidly in time and space, and that the availability of solid-phase Fe(III)-oxyhydroxides affects this rate of change.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-6584.2002.tb02513.xDOI Listing

Publication Analysis

Top Keywords

ground water
16
redox processes
12
petroleum hydrocarbon-contaminated
12
rapid evolution
8
evolution redox
8
hydrocarbon-contaminated aquifer
8
rapidly time
8
methanogenesis 1996
8
aquifer sediments
8
water-chemistry data
8

Similar Publications

Alkali-Activated Permeable Concretes with Agro-Industrial Wastes for a Sustainable Built Environment.

Materials (Basel)

December 2024

Department of Architectural and Construction Design, Faculty of Architecture, Wrocław University of Science and Technology, Politechnika Wrocławska 27, 50-370 Wrocław, Poland.

This research presents a proposal for alkali-activated permeable concrete composites with the use of industrial by-products, including ground granulated blast-furnace slag (GGBS) and waste-foundry sand, as well as agro-desecrate product, i.e., sugarcane bagasse ash (SBA).

View Article and Find Full Text PDF

Mechanical Properties and Microstructure of Geopolymer-Based PFSS Synthesized from Excavated Loess.

Materials (Basel)

December 2024

CSCEC Strait Construction and Development Co., Ltd., Fuzhou 350015, China.

Pre-mixed fluidized solidified soil (PFSS) has the advantages of pumpability, convenient construction, and a short setting time. This paper took the excavated loess in Fuzhou as the research object and used cement-fly-ash-ground granulated blast furnace slag-carbide slag as a composite geopolymer system (CFGC) to synthesize PFSS. This study investigated the fluidity and mechanical strength of PFSS under different water-solid ratios and curing agent dosages; finally, the microstructure of the composite geopolymer system-pre-mixed fluidized solidified soil (CFGC-PFSS) was characterized.

View Article and Find Full Text PDF

Genomic insights into Thermomonas hydrothermalis: potential applications in industrial biotechnology.

World J Microbiol Biotechnol

January 2025

Department of Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey.

Thermomonas hydrothermalis, a thermophilic bacterium isolated from hot springs, exhibits unique genomic features that underpin its adaptability to extreme environments and its potential in industrial biotechnology. In this study, we present a comparative genomic analysis of two strains, DSM 14834 and HOT.CON.

View Article and Find Full Text PDF

Riverbank filtration: a frontline treatment method for surface and groundwater-African perspective.

Environ Monit Assess

January 2025

Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.

Riverbank filtration (RBF) has emerged as a crucial and functional water treatment method, particularly effective in improving surface water quality. This review is aimed at assessing the suitability of RBF in regions with limited access to clean water, such as Africa, where it has the potential to alleviate water scarcity and enhance water security. This review used various studies, highlighting the principles, applications, and advancements of RBF worldwide.

View Article and Find Full Text PDF

An Azide-based Passive Sampler for Monitoring Abiotic Reduction of Chlorinated Solvent Contaminants in Groundwater.

Chemosphere

January 2025

Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Massachusetts, United States. Electronic address:

There is significant interest in monitoring abiotic decomposition of chlorinated solvents at contaminated sites due to large uncertainties regarding the rates of abiotic attenuation of trichloroethylene (PCE) and perchloroethylene (PCE) under field conditions. In this study, an innovative passive sampling tool was developed to quantify acetylene, a characteristic product of abiotic reduction of TCE or PCE, in groundwater. The sampling mechanism is based on the highly specific and facile click reaction between acetylene and an azide compound to form a biologically and chemically stable triazole product.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!