Within clariid fishes several cranial morphologies can be discerned. Especially within anguilliform representatives an increase in the degree of hypertrophy of the jaw adductors occurs. The hypertrophy of the jaw adductors and skeletal modifications in the cranial elements have been linked to increased bite force. The functional significance of this supposed increase in bite force remains obscure. In this study, biomechanical modeling of the cranial apparatus in four clariid representatives showing a gradual increase in the hypertrophy of the jaw adductors (Clarias gariepinus, Clariallabes melas, Channallabes apus, and Gymnallabes typus) is used to investigate whether bite force actually increased. Static bite modeling shows that the apparent hypertrophy results in an increase in bite force. For a given head size, the largest bite forces are predicted for C. apus, the lowest ones for C. gariepinus, and intermediate values are calculated for the other species. In addition, also in absolute measures differences in bite force remain, with C. apus biting distinctly harder than C. gariepinus despite its smaller head size. This indicates that the hypertrophy of the jaw adductors is more than just a correlated response to the decrease in absolute head size. Further studies investigating the ecological relevance of this performance difference are needed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.1121DOI Listing

Publication Analysis

Top Keywords

jaw adductors
20
bite force
20
hypertrophy jaw
16
head size
12
bite
9
clariid fishes
8
bite modeling
8
increase bite
8
jaw
5
adductors
5

Similar Publications

Pterosaurs were the first vertebrates to evolve active flight. The lack of many well-preserved pterosaur fossils limits our understanding of the functional anatomy and behavior of these flight pioneers, particularly from their early history (Triassic to Middle Jurassic). Here we describe in detail the osteology of an exceptionally preserved Middle Jurassic pterosaur, the holotype of Dearc sgiathanach from the Isle of Skye, Scotland.

View Article and Find Full Text PDF

Kinetic comparisons of jaw opening, jaw closing and locomotor muscles.

Comp Biochem Physiol A Mol Integr Physiol

February 2025

Biology Department, Fairfield University, 1073 N. Benson Road, Fairfield, CT 06824, USA.

Understanding contraction dynamics of skeletal muscle is critically important to appreciate performance capabilities of skeletal structures, especially for structures responsible for feeding and/or locomotion. Furthermore, it is important to understand how temperature can impact contraction dynamics in vertebrates that are regularly exposed to fluctuations in temperature. We aimed to address differences between jaw opening (sternhyoideus), jaw closing (adductor mandibulae) and locomotor (abductor superficialis) muscle contraction dynamics in a labrid fish.

View Article and Find Full Text PDF

Jaw morphology and function determine the range of dietary items that an organism can consume. Bite force is a function of the force exerted by the jaw musculature and applied via the skeleton. Bite force has been studied in a wide range of taxa using various methods, including direct measurement, or calculation from skulls or jaw musculature.

View Article and Find Full Text PDF

Essential for sustaining a high metabolic rate is the efficient fragmentation of food, which is determined by molar morphology and the movement of the jaw. The latter is related to the jaw morphology and the arrangement of the masticatory muscles. Soricid jaw apparatuses are unique among mammals, as the articulation facet on the condylar process is separated into a dorsal and a ventral part, which has often been linked to more differentiated jaw motions.

View Article and Find Full Text PDF

African wild dogs (Lycaon pictus) are unique among canids in their specialized hunting strategies and social organization. Unlike other, more omnivorous canids, L. pictus is a hypercarnivore that consumes almost exclusively meat, particularly prey larger than its body size, which it hunts through cooperative, exhaustive predation tactics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!