The purpose of this study was to assess whether structural brain damage as detected by volumetric magnetization transfer imaging (MTI) is present in mild cognitive impairment (MCI) and Alzheimer's disease (AD) and, if so, whether these abnormalities are global in character or restricted to the temporal lobe. Volumetric MTI analysis of the whole brain and temporal and frontal lobes was performed in 25 patients with probable AD, in 13 patients with MCI, and in 28 controls. Magnetization transfer ratio (MTR) histograms were produced, from which we derived measures for structural brain damage and atrophy. The peak heights of the MTR histograms of MCI and AD patients were lower than those of controls for the whole brain and temporal and frontal lobes, reflecting structural brain damage. AD patients had more atrophy than controls in all regions that were studied. MCI patients differed from controls for temporal lobe atrophy only. Volumetric MTI demonstrates structural changes that are related to cognitive decline in large parts of the brain of AD patients. Moreover, structural changes also were observed in MCI patients, indicating that widespread brain damage can be demonstrated before patients are clinically demented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.10244DOI Listing

Publication Analysis

Top Keywords

brain damage
16
magnetization transfer
12
structural brain
12
mci patients
12
transfer imaging
8
mild cognitive
8
cognitive impairment
8
alzheimer's disease
8
temporal lobe
8
volumetric mti
8

Similar Publications

Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD.

View Article and Find Full Text PDF

Background: Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Of note, prenatal Zika infection can cause a spectrum of neurodevelopmental disorders, including congenital Zika syndrome.

View Article and Find Full Text PDF

Background: Paroxysmal sympathetic hyperactivity (PSH) occurs with high prevalence among critically ill patients with traumatic brain injury (TBI) and is associated with worse outcomes. The PSH-Assessment Measure (PSH-AM) consists of a Clinical Features Scale and a diagnosis likelihood tool (DLT) intended to quantify the severity of sympathetically mediated symptoms and the likelihood that they are due to PSH, respectively, on a daily basis. Here, we aim to identify and explore the value of dynamic trends in the evolution of sympathetic hyperactivity following acute TBI using elements of the PSH-AM.

View Article and Find Full Text PDF

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

Evolving concepts in intracranial pressure monitoring - from traditional monitoring to precision medicine.

Neurotherapeutics

January 2025

Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:

A wide range of acute brain injuries, including both traumatic and non-traumatic causes, can result in elevated intracranial pressure (ICP), which in turn can cause further secondary injury to the brain, initiating a vicious cascade of propagating injury. Elevated ICP is therefore a neurological injury that requires intensive monitoring and time-sensitive interventions. Patients at high risk for developing elevated ICP undergo placement of invasive ICP monitors including external ventricular drains, intraparenchymal ICP monitors, and lumbar drains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!