Differential distribution of laminins in Alzheimer disease and normal human brain tissue.

J Neurosci Res

The Brain Laboratory, Biomedicum Helsinki, Institute of Biomedicine (Anatomy), University of Helsinki, University of Helsinki, Finland.

Published: July 2002

Immunocytochemistry, Western blotting, and RT-PCR were used to identify the isoforms of laminin expressed in the Alzheimer disease, but not in normal human brain tissue. We found that alpha 1 laminin was heavily over-expressed in Alzheimer disease frontal cortex, and localized in reactive astrocytes of the grey and white matter, and as punctate deposits in the senile placques of the Alzheimer brain tissue. Antibodies against the C-terminal neurite outgrowth domain of the gamma 1 laminin demonstrated expression of the gamma 1 laminin in GFAP-immunoreactive reactive astrocytes of the Alzheimer disease frontal cortex. The gamma 1 laminin was also heavily over-expressed in reactive astrocytes of both grey and white matter. Although antibodies against the C-terminal neurite outgrowth domain failed to localize gamma 1 laminin in senile plaques, antibodies against the N-terminal domains of the gamma 1 laminin demonstrated gamma 1 laminin as punctate deposits in the senile plaques. The present results indicate that enhanced and specialized expression patterns of alpha 1 and gamma 1 laminins distinctly associate these two laminins with the Alzheimer disease. The fact that domain specific antibodies localize both alpha1 and gamma 1 laminins in the senile plaques as punctate deposits and in astrocytes of both the gray and white matter indicate that these laminins and their specific domains may have distinct functions in the pathophysiology of the Alzheimer disease.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.10292DOI Listing

Publication Analysis

Top Keywords

alzheimer disease
24
gamma laminin
24
brain tissue
12
reactive astrocytes
12
white matter
12
punctate deposits
12
senile plaques
12
laminins alzheimer
8
disease normal
8
normal human
8

Similar Publications

The aggregation and accumulation of amyloid β 42 (Aβ42) peptides on the surface of brain cells is associated with Alzheimer's disease (AD); however, the underlying molecular mechanisms remain unclear. Herein, we used a unique brain-mimetic open system that continuously flows Aβ42 solution to analyze the initial aggregation and adsorptive nature of Aβ42 at physiological concentrations on the lipid membrane. The open system accelerated the adsorption and dimerization kinetics.

View Article and Find Full Text PDF

Cognitive dysfunction in Alzheimer's disease results from a complex interplay of various pathological processes, including the dysregulation of key enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase B (MAO-B). This study proposes and designs a series of novel molecules derived from 8-hydroxyquinoline (Azo-8HQ) as potential multi-target lead candidates for treating AD. An exhaustive in silico analysis was conducted, encompassing docking studies, ADMET analysis, density functional theory (DFT) studies, molecular dynamics simulations, and subsequent MM-GBSA calculations to examine the pharmacological potential of these molecules with the specific targets of interest.

View Article and Find Full Text PDF

Background: We aimed to characterize factors associated with the under-studied complication of cognitive decline in aging people with long-duration type 1 diabetes (T1D).

Methods: Joslin "Medalists" (n = 222; T1D ≥ 50 years) underwent cognitive testing. Medalists (n = 52) and age-matched non-diabetic controls (n = 20) underwent neuro- and retinal imaging.

View Article and Find Full Text PDF

Uncovering the intricacies of IGF-1 in Alzheimer's disease: new insights from regulation to therapeutic targeting.

Inflammopharmacology

January 2025

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.

View Article and Find Full Text PDF

The deposition of amyloid-β (Aβ) aggregates and metal ions within senile plaques is a hallmark of Alzheimer's disease (AD). Among the modifications observed in Aβ peptides, -terminal truncation at Phe4, yielding Aβ, is highly prevalent in AD-affected brains and significantly alters Aβ's metal-binding and aggregation profiles. Despite the abundance of Zn(II) in senile plaques, its impact on the aggregation and toxicity of Aβ remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!