alpha-Aminoadipate reductase (alpha-AAR) is a key enzyme in the branched pathway for lysine and beta-lactam biosynthesis of filamentous fungi since it competes with alpha-aminoadipyl-cysteinyl-valine synthetase for their common substrate L-alpha-aminoadipic acid. The alpha-AAR activity in two penicillin-producing Penicillium chrysogenum strains and two cephalosporin-producing Acremonium chrysogenum strains has been studied. The alpha-AAR activity peaked during the growth-phase preceding the onset of antibiotic production, which coincides with a decrease in alpha-AAR activity, and was lower in high penicillin- or cephalosporin-producing strains. The alpha-AAR required NADPH for enzyme activity and could not use NADH as electron donor for reduction of the alpha-aminoadipate substrate. The alpha-AAR protein of P. chrysogenum was detected by Western blotting using anti-alpha-AAR antibodies. The mechanism of lysine feedback regulation in these two filamentous fungi involves inhibition of the alpha-AAR activity but not repression of its synthesis by lysine. This is different from the situation in yeasts where lysine feedback inhibits and represses alpha-AAR. Nitrate has a strong negative effect on alpha-AAR formation as shown by immunoblotting studies of alpha-AAR. The nitrate effect was reversed by lysine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-002-0995-7 | DOI Listing |
J Biol Chem
March 2003
Insituto de Biotecnologia, Parque Cientifico de León, Avda. del Real no. 1, Spain.
The alpha-aminoadipate reductase (alpha-AAR) of Penicillium chrysogenum, an enzyme that activates the alpha-aminoadipic acid by forming an alpha-aminoadipyl adenylate and reduces the activated intermediate to alpha-aminoadipic semialdehyde, was purified to homogeneity by immunoaffinity techniques, and the kinetics for alpha-aminoadipic acid, ATP, and NADPH were determined. Sequencing of the N-terminal end confirmed the 10 first amino acids deduced from the nucleotide sequence. Its domain structure has been investigated using limited proteolysis and active site labeling.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
July 2002
Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Avda. del Real, no. 1, Spain.
alpha-Aminoadipate reductase (alpha-AAR) is a key enzyme in the branched pathway for lysine and beta-lactam biosynthesis of filamentous fungi since it competes with alpha-aminoadipyl-cysteinyl-valine synthetase for their common substrate L-alpha-aminoadipic acid. The alpha-AAR activity in two penicillin-producing Penicillium chrysogenum strains and two cephalosporin-producing Acremonium chrysogenum strains has been studied. The alpha-AAR activity peaked during the growth-phase preceding the onset of antibiotic production, which coincides with a decrease in alpha-AAR activity, and was lower in high penicillin- or cephalosporin-producing strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!