AI Article Synopsis

  • The study investigates how apoptosis affects cells with chromosomal errors, specifically looking into whether this process occurs below certain toxicity thresholds for chromosome loss and non-disjunction.
  • The researchers exposed human lymphocytes to varying concentrations of microtubule inhibitors (nocodazole and carbendazim) and analyzed apoptosis induction using the annexin-V test, alongside evaluating chromosome non-disjunction and loss.
  • Findings suggest that while aneuploid cells can be eliminated, cells with micronuclei (indicative of chromosomal damage) tend to disappear more efficiently than those with non-disjunction.

Article Abstract

Two major mechanisms responsible for chromosome segregation errors are non-disjunction and chromosome loss, both leading to aneuploidy. Previous studies in our laboratory showed the existence of thresholds for the induction of chromosome non-disjunction and chromosome loss and the induction of apoptosis by microtubule inhibitors. From a mechanistic point of view one can expect that apoptosis contributes to the elimination of cells with premutagenic/mutagenic lesions. If aneuploid cells were eliminated by the induction of apoptosis below the threshold concentrations for chromosome loss and non-disjunction, the defined thresholds would not be applicable to cells unable to undergo apoptosis. The aim of this study was to investigate whether apoptosis was induced directly or indirectly as a response to aberrant chromosome segregation below the thresholds for the induction of chromosome loss and non-disjunction, as previously defined by us. Therefore, human lymphocytes were exposed in vitro to five concentrations of nocodazole and five concentrations of carbendazim representing the threshold concentrations for chromosome non-disjunction and chromosome loss, two concentrations below the lowest threshold and one concentration between the two threshold values. After 48 h exposure to the aneugens, induction of apoptosis was analysed by the annexin-V test. The frequencies of chromosome non-disjunction and chromosome loss were estimated in cytokinesis-blocked human lymphocytes in combination with FISH; this methodology was applied to whole cell cultures as well as to apoptotic and viable cell fractions obtained using magnetic annexin microbead cell sorting. Our results suggest that elimination of aneuploid cells does occur. However, the efficiency of disappearance of micronucleated cells is higher than for cells presenting chromosome non-disjunction. The correlation found between early apoptotic events and micronucleus formation could account, at least in part, for the specific elimination of aneuploid cells.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mutage/17.4.337DOI Listing

Publication Analysis

Top Keywords

chromosome loss
24
non-disjunction chromosome
16
chromosome non-disjunction
16
chromosome
12
induction apoptosis
12
aneuploid cells
12
cells
8
micronucleated cells
8
chromosome segregation
8
thresholds induction
8

Similar Publications

Intraspecific Variation and Recent Loss of Ancient, Conserved Effector Genes in the Sudden Oak Death Pathogen .

Mol Plant Microbe Interact

January 2025

USDA ARS, Horticultural Crops Research Laboratory, 3420 NW Orchard Ave., Corvallis, Oregon, United States, 97330;

Members of the genus are responsible for many important diseases in agricultural and natural ecosystems. causes devastating diseases of oak, and tanoak stands in US forests and larch in the UK. The four evolutionary lineages involved express different virulence phenotypes on plant hosts, and characterization of gene content is foundational to understanding the basis for these differences.

View Article and Find Full Text PDF

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Balanced translocation carriers experience elevated reproductive risks, including pregnancy loss and children with anomalies due to generating chromosomally unbalanced gametes. While understanding the likelihood of producing unbalanced conceptuses is critical for individuals to make reproductive decisions, risk estimates are difficult to obtain as most balanced translocations are unique. To improve reproductive risk estimates, Drs.

View Article and Find Full Text PDF

Bacterial strains that are genetically engineered to constitutively produce fluorescent proteins have aided our study of bacterial physiology, biofilm formation, and interspecies interactions. Here, we report on the construction and utilization of new strains that produce the blue fluorescent protein mTagBFP2, the green fluorescent protein sfGFP, and the red fluorescent protein mScarlet-I3 in species , and . Gene fragments, developed to contain the constitutive promoter P , the fluorescent gene of interest as well as , providing resistance to the antibiotic spectinomycin, were inserted into selected open reading frames on the chromosome that were both transcriptionally silent and whose loss caused no measurable changes in fitness.

View Article and Find Full Text PDF

Background: Embryo selection for transfer is critical in assisted reproduction. The presence of DNA in the blastocoel cavity of human blastocysts is assumed to be a consequence of common preimplantation chromosomal abnormalities.

Objective: This study examined the relationship between the amount of blastocoel fluid (BF) DNA and the band intensity of amplified BF-DNA in gel electrophoresis, considering the influence of ploidy status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!