Lesion bypass in yeast cells: Pol eta participates in a multi-DNA polymerase process.

EMBO J

UPR 9003 du CNRS, Cancérogenèse et Mutagenèse Moléculaire et Structurale, UPR conventionnée avec l'Université Louis Pasteur de Strasbourg, ESBS, Blvd S.Brant, 67400 Illkirch, France.

Published: July 2002

Replication through (6-4)TT and G-AAF lesions was compared in Saccharomyces cerevisiae strains proficient and deficient for the RAD30-encoded DNA polymerase eta (Pol eta). In the RAD30 strain, the (6-4)TT lesion is replicated both inaccurately and accurately 60 and 40% of the time, respectively. Surprisingly, in a rad30 Delta strain, the level of mutagenic bypass is essentially suppressed, while error-free bypass remains unchanged. Therefore, Pol eta is responsible for mutagenic replication through the (6-4)TT photoproduct, while another polymerase mediates its error-free bypass. Deletion of the RAD30 gene also reduces the levels of both accurate and inaccurate bypass of AAF lesions within two different sequence contexts up to 8-fold. These data show that, in contrast to the accurate bypass by Pol eta of TT cyclobutane dimers, it is responsible for the mutagenic bypass of other lesions. In conclusion, this paper shows that, in yeast, translesion synthesis involves the combined action of several polymerases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC126109PMC
http://dx.doi.org/10.1093/emboj/cdf363DOI Listing

Publication Analysis

Top Keywords

pol eta
16
replication 6-4tt
8
mutagenic bypass
8
error-free bypass
8
responsible mutagenic
8
bypass
6
eta
5
lesion bypass
4
bypass yeast
4
yeast cells
4

Similar Publications

The replicative polymerase delta is inefficient copying repetitive DNA sequences. Error-prone translesion polymerases have been shown to switch with high-fidelity replicative polymerases to help navigate repetitive DNA. We and others have demonstrated the importance of one such translesion polymerase, polymerase Eta (pol eta), in facilitating replication at genomic regions called common fragile sites (CFS), which are difficult-to-replicate genomic regions that are hypersensitive to replication stress.

View Article and Find Full Text PDF

Long AT repeat tracts form non-B DNA structures that stall DNA replication and cause chromosomal breakage. AT repeats are abundant in human common fragile sites (CFSs), genomic regions that undergo breakage under replication stress. Using an in vivo yeast model system containing AT-rich repetitive elements from human CFS FRA16D, we find that DNA polymerase zeta (Pol ζ) is required to prevent breakage and subsequent deletions at hairpin and cruciform forming (AT/TA)n sequences, with little to no role at an (A/T)28 repeat or a control non-structure forming sequence.

View Article and Find Full Text PDF

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.

View Article and Find Full Text PDF

Purpose: High-intensity functional interval training (HIFT) is predominantly composed of high exercise training intensities (HiT) and loads. Both have been linked to a higher risk of overtraining and injuries in inexperienced populations. A polarized training approach is characterized by high amounts of low-intensity training (LiT) and only approximately 5%-20% HiT.

View Article and Find Full Text PDF

Old Passengers as New Drivers: Chromosomal Passenger Proteins Engage in Translesion Synthesis.

Cells

October 2024

Institute for Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.

Article Synopsis
  • Survivin plays a crucial role in inhibiting apoptosis and aiding mitotic progression, as well as contributing to therapy resistance through its involvement in the DNA damage response.
  • Recent research shows that ionizing radiation increases Survivin levels, leading to its accumulation in specific nuclear areas associated with DNA replication, and depletion of Survivin enhances DNA damage markers, suggesting a role in DNA repair.
  • The study uncovers a relationship between Survivin and chromosomal passenger complex proteins in facilitating damage-induced replication stress management, highlighting the potential for these proteins to influence tumorigenesis due to their overexpression in cancers.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!