O-linked glycosylation on Ser/Thr with single N-acetylglucosamine (O-GlcNAcylation) is a reversible modification of many cytosolic/nuclear proteins, regulated in part by UDP-GlcNAc levels. Transgenic (T) mice that overexpress GLUT1 in muscle show increased basal muscle glucose transport that is resistant to insulin stimulation. Muscle UDP-GlcNAc levels are increased. To assess whether GLUT4 is a substrate for O-GlcNAcylation, we translated GLUT4 mRNA (mutated at the N-glycosylation site) in rabbit reticulocyte lysates supplemented with [(35)S]methionine. O-GlcNAcylated proteins were galactosylated and separated by lectin affinity chromatography; >20% of the translated GLUT4 appeared to be O-GlcNAcylated. To assess whether GLUT4 or GLUT4-associated proteins were O-GlcNAcylated in muscles, muscle membranes were prepared from T and control (C) mice labeled with UDP-[(3)H]galactose and immunoprecipitated with anti-GLUT4 IgG (or nonimmune serum), and N-glycosyl side chains were removed enzymatically. Upon SDS-PAGE, several bands showed consistently two- to threefold increased labeling in T vs. C. Separating galactosylated products by lectin chromatography similarly revealed approximately threefold more O-GlcNAc-modified proteins in T vs. C muscle membranes. RL-2 immunoblots confirmed these results. In conclusion, chronically increased glucose flux, which raises UDP-GlcNAc in muscle, results in enhanced O-GlcNAcylation of membrane proteins in vivo. These may include GLUT4 and/or GLUT4-associated proteins and may contribute to insulin resistance in this model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00060.2002 | DOI Listing |
Clin Exp Pharmacol Physiol
March 2025
School of Physical Education, Hangzhou Normal University, Hangzhou, China.
Exercise activates autophagy and lysosome system in skeletal muscle, which are known to play an important role in metabolic adaptation. However, the mechanism of exercise-activated autophagy and lysosome system in obese insulin resistance remains covert. In this study, we investigated the role of exercise-induced activation of autophagy and lysosome system in improving glucose metabolism of skeletal muscle.
View Article and Find Full Text PDFDiabetes
January 2025
Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, US.
Adipocyte hypertrophy significantly contributes to insulin resistance and metabolic dysfunction. Our previous research established JMJD8 as a mediator of insulin resistance, noting its role in promoting adipocyte hypertrophy within an autonomous adipocyte context. Nevertheless, the precise mechanisms underlying this phenomenon remained elusive.
View Article and Find Full Text PDFZ Naturforsch C J Biosci
January 2025
Department of Environment Science, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India.
Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia due to insufficient insulin secretion or action. Contributing factors include genetic predisposition, obesity, family history, inactivity, and environmental risks. Type 2 diabetes mellitus (T2DM), the most common form, involves impaired insulin secretion by pancreatic β-cells, leading to insulin resistance.
View Article and Find Full Text PDFBackground: Type 2 diabetes mellitus (T2DM) is among the modifiable risk factors for Alzheimer's disease (AD) and ranks among the leading chronic diseases globally. It is characterized by elevated blood glucose levels and insulin resistance, which over time may impair memory performance. More so, saliva appears to be a promising biomarker for the diagnosis of AD since conventional methods appear invasive and expensive in the country.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UNAM, School of Medicine, Department of Physiology, CDMX, DF, Mexico.
Background: Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia and insulin resistance. Historically, it is linked to greater cognitive decline and risk of Alzheimer's dementia. Although deregulations in the insulin signaling pathway have been identified, further investigation is needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!