A series of 58 3-arylisoquinoline antitumor agents were investigated for defining the pharmacophore model using comparative molecular field analysis (CoMFA) program. The studied compounds related to bioisostere of benzophenanthridine alkaloid were synthesized and evaluated for antitumor cytotoxicity against human lung tumor cell (A 549). In order to perform the systematic molecular modeling study of these compounds, the conformational search was carried out based on the single X-ray crystallographic structure of 7,8-dimethoxy-3-phenylisoquinolin-(2H)-one (2). Interestingly, two types of structures having different dihedral angles between the isoquinoline ring and 3-aryl ring were found in the crystals. Therefore, CoMFA was performed two different, overlapping ways. The alignments of the structures were based on the common isoquinoline ring and 3-aryl ring. The 3-D-quantitative structure-activity relationship study resulted in significant cross-validated, conventional r(2) values equal to 0.715 and 0.927, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0968-0896(02)00137-2DOI Listing

Publication Analysis

Top Keywords

molecular modeling
8
3-arylisoquinoline antitumor
8
antitumor agents
8
comparative molecular
8
molecular field
8
field analysis
8
isoquinoline ring
8
ring 3-aryl
8
3-aryl ring
8
molecular
4

Similar Publications

The ability of environmental cues to trigger alcohol-seeking behaviours is thought to facilitate problematic alcohol use. Individuals' tendency to attribute incentive salience to cues may increase the risk of addiction. We sought to study the relationship between incentive salience and alcohol addiction using non-preferring rats to model the heterogeneity of human alcohol consumption, investigating both males and females.

View Article and Find Full Text PDF

Adsorption Structure and Selectivity of Phenols in Water-Immersed Organomontmorillonite Investigated by Molecular Simulation.

Langmuir

January 2025

Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Tokyo, Hachioji 192-0015, Japan.

The two-dimensional interlayer space of layered materials has been highlighted due to their adsorption property, whose nanostructure in the water-immersed state is scarcely understood by experiment. Recent developments in molecular simulation have enabled researchers to investigate the interlayer structure, but water content is necessary for accurate modeling. In the present study, we proposed a theoretical method to estimate the saturated water content and adsorption selectivity of trichlorophenol and phenol in montmorillonite modified with hexadecyltrimethylammonium ions.

View Article and Find Full Text PDF

Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF

Background: Pancreatic cancer is highly aggressive and has a low survival rate primarily due to late-stage diagnosis and the lack of effective early detection methods. We introduce here a novel, noninvasive urinary extracellular vesicle miRNA-based assay for the detection of pancreatic cancer from early to late stages.

Methods: From September 2019 to July 2023, Urine samples were collected from patients with pancreatic cancer (n = 153) from five distinct sites (Hokuto Hospital, Kawasaki Medical School Hospital, National Cancer Center Hospital, Kagoshima University Hospital, and Kumagaya General Hospital) and non-cancer participants (n = 309) from two separate sites (Hokuto Hospital and Omiya City Clinic).

View Article and Find Full Text PDF

Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!