Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1540-8167.2002.00630.x | DOI Listing |
Front Endocrinol (Lausanne)
December 2024
Department of Endocrine Surgery, University College London Hospital, London, United Kingdom.
Background: Surgery is the preferred treatment for primary hyperparathyroidism. Minimally invasive parathyroidectomy is only feasible with accurate preoperative localisation. Virtual 3D anatomical models can be constructed from patient-specific CT scans using segmentation software.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
December 2024
College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China.
In order to establish a stable in vitro culture platform for chicken small intestine three-dimensional (3D) organoids, in this study, crypt cells were collected from the small intestine of 18-day-old embryos of AA broilers. On the basis of the L-WRN conditioned medium, we optimized the culture conditions of chicken small intestinal organoids by adjusting the proportions of nicotinamide, N-acetylcysteine, LY2157299, CHIR99021, Jagged-1, FGF, and other cytokines to select the medium suitable for the long-term stable growth of the organoids. The optimization results showed that the addition of 1.
View Article and Find Full Text PDFHealthc Technol Lett
December 2024
Despite the benefits of minimally invasive surgery, interventions such as laparoscopic liver surgery present unique challenges, like the significant anatomical differences between preoperative images and intraoperative scenes due to pneumoperitoneum, patient pose, and organ manipulation by surgical instruments. To address these challenges, a method for intraoperative three-dimensional reconstruction of the surgical scene, including vessels and tumors, without altering the surgical workflow, is proposed. The technique combines neural radiance field reconstructions from tracked laparoscopic videos with ultrasound three-dimensional compounding.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, E-28802 Madrid, Spain.
Here, we present three-dimensional-printed dual-channel flow-through miniaturized devices (3D) with dual electrochemical detection (ED) integrating two working electrodes each in an in-channel configuration (3D-ED). Prussian Blue (PB) shell-gold nanoparticles ((PB)AuNP) core-based electrochemistry was chosen for selective hydrogen peroxide determination. 3D-ED devices exhibited impress stability, identical intrachannel and interchannel electrochemical performances, and excellent interdevice precision with values under 9%, revealing the reliability of the design and fabrication of the devices.
View Article and Find Full Text PDFEng Comput
December 2024
Center for Real-Time Computing, Department of Computer Science, Old Dominion University, Norfolk, VA, United States of America.
Converting a three-dimensional medical image into a 3D mesh that satisfies both the quality and fidelity constraints of predictive simulations and image-guided surgical procedures remains a critical problem. Presented is an image-to-mesh conversion method called CBC3D. It first discretizes a segmented image by generating an adaptive Body-Centered Cubic (BCC) mesh of high-quality elements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!