AI Article Synopsis

  • The paper examines geochemical data from peat near a Bronze Age copper mine in mid-Wales to uncover pollution history linked to mining activities.
  • Four peat samples were analyzed using various geochemical techniques, revealing copper enrichment patterns correlating with prehistoric mining periods.
  • The study concludes that these copper concentrations indicate localized atmospheric pollution from mining, suggesting that blanket peat deposits can effectively track pollution history in former mining regions.

Article Abstract

This paper presents geochemical data from a blanket peat located close to a Bronze Age copper mine on the northern slopes of the Ystwyth valley, Ceredigion, mid-Wales, UK. The research objective was to explore the possibility that the peat contained a geochemical record of the pollution generateD by mining activity. Four peat monoliths were extracted from the blanket peat to reconstruct the pollution history of the prehistoric mine. Three different geochemical measurement techniques were employed and four copper profiles have been reconstructed, two of which are radiocarbon-dated. The radiocarbon dates at one profile located close to the mine confirm that copper enrichment occurs in the peat during the known period of prehistoric mining. Similar enrichment of copper concentrations is shown in one adjacent profile and a profile within 30 m away. In contrast, copper was not enriched in the other radiocarbon-dated monolith, collected approximately 1.35 km to the north of the mine. Whilst other possible explanations to explain the copper concentrations are discussed, it is argued that the high copper concentrations represent evidence of localised atmospheric pollution caused by Bronze Age copper mining in the British Isles. The results of this study suggest that copper may be immobile in blanket peat and such deposits can usefully be used to reconstruct atmospheric pollution histories in former copper mining areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0048-9697(02)00027-xDOI Listing

Publication Analysis

Top Keywords

atmospheric pollution
12
copper mining
12
blanket peat
12
copper concentrations
12
copper
11
located close
8
bronze age
8
age copper
8
peat
6
pollution
5

Similar Publications

Ancient texts and archaeological evidence indicate substantial lead exposure during antiquity that potentially impacted human health. Although lead exposure routes were many and included the use of glazed tablewares, paints, cosmetics, and even intentional ingestion, the most significant for the nonelite, rural majority of the population may have been through background air pollution from mining and smelting of silver and lead ores that underpinned the Roman economy. Here, we determined potential health effects of this air pollution using Arctic ice core measurements of Roman-era lead pollution, atmospheric modeling, and modern epidemiology-based relationships between air concentrations, blood lead levels (BLLs), and cognitive decline.

View Article and Find Full Text PDF

Purification and Value-Added Conversion of NO under Ambient Conditions with Photo-/Electrocatalysis Technology.

Environ Sci Technol

January 2025

Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

As primary air pollutants from fossil fuel combustion, the excess emission of nitric oxides (NO) results in a series of atmospheric environmental issues. Although the selective catalytic reduction technology has been confirmed to be effective for NO removal, green purification and value-added conversion of NO under ambient conditions are still facing great challenges, especially for nitrogen resource recovery. To address that, photo-/electrocatalysis technology offers sustainable routes for efficient NO purification and upcycling under ambient temperature and pressure, which has received considerable attention from scientific communities.

View Article and Find Full Text PDF

Background: Atmospheric ozone is a common air pollutant with known impacts on maternal and fetal health. However, the relationship between gestational ozone exposure and susceptibility to respirovirus infection remains unclear. This study aims to assess the association between longitudinal ozone exposure during pregnancy and COVID-19 risk in late gestation.

View Article and Find Full Text PDF

Critical loads (CLs) are frequently used to quantify terrestrial ecosystem impacts from nitrogen (N) deposition using ecological responses such as the growth and mortality of tree species. Typically, CLs are reported as a single value, with uncertainty, for an indicator across a species' entire range. Mediating factors such as climate and soil conditions can influence species' sensitivity to N, but the magnitudes of these effects are rarely calculated explicitly.

View Article and Find Full Text PDF

Current status and strategies for controlling hexachlorobutadiene from multiple perspectives of emission, occurrence, and disposal.

Environ Res

January 2025

Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Hexachlorobutadiene (HCBD), as an emerging persistent organic pollutant, poses a pressing global environmental issue concerning its reduction and control. However, the lack of systematic studies on the sources and occurrence of HCBD hinders the development of effective disposal technologies. This study addresses HCBD prevention and treatment from multiple perspectives, including source emissions, environmental contamination distribution, and control technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!