17Beta-estradiol regulates expression of K(ATP) channels in heart-derived H9c2 cells.

J Am Coll Cardiol

Tayside Institute of Child Health, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY Scotland, UK.

Published: July 2002

Objectives: The main objective of the present study was to establish whether 17beta-estradiol (E2) regulates expression of cardiac adenosine triphosphate-sensitive potassium (K(ATP)) channel.

Background: Based on our previous studies that demonstrate gender-specific differences in sarcolemmal K(ATP) channels, we have hypothesized that the main estrogen, E2, may regulate expression of cardiac K(ATP) channels.

Methods: Reverse transcription-polymerase chain reaction (RT-PCR) using primers specific for Kir6.2 and sulfonylurea receptor 2A (SUR2A) subunits was performed on total ribonucleic acid (RNA) from rat embryonic heart-derived H9c2 cells. Immunoprecipitation and Western blotting using anti-Kir6.2 and anti-SUR2A antibodies was done on membrane fraction of H9c2 cells. Whole cell electrophysiology and digital epifluorescent Ca(2+) imaging were performed on living H9c2 cells. All experiments were done in cells incubated 24 h with or without 100 nM E2.

Results: The RT-PCR revealed higher levels of SUR2A, but not Kir6.2, messenger RNA (mRNA) in E2-treated, relative to untreated, cells. Increase of the level of only the SUR2A subunit could change the number of sarcolemmal K(ATP) channels only if the Kir6.2 is in excess over SUR2A. Indeed, RT-PCR analysis demonstrated considerably lower levels of SUR2A mRNA compared with Kir6.2 mRNA. Significantly higher levels of both Kir6.2 and SUR2A protein subunits were found in the membrane fraction of E2-treated cells compared with untreated ones, and the density of current evoked by pinacidil (100 microM), a K(ATP) channel opener, was significantly higher in E2-treated compared with untreated cells. To test the effect of E2 on cellular response to hypoxia-reoxygenation, we have measured on-line, intracellular concentration of Ca(2+) in H9c2 cells exposed to hypoxia-reoxygenation. Intracellular Ca(2+) loading induced by hypoxia-reoxygenation was significantly decreased by treatment with E2. This E2-mediated protection was inhibited by HMR 1098 (30 microM), but not by 5-hydroxydecanoate (50 microM).

Conclusions: In conclusion, this study has demonstrated that E2 increases levels of SUR2A subunit, stimulates K(ATP) channel formation and protects cardiac cells from hypoxiareoxygenation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0735-1097(02)01947-2DOI Listing

Publication Analysis

Top Keywords

h9c2 cells
20
katp channels
12
levels sur2a
12
cells
10
17beta-estradiol regulates
8
regulates expression
8
heart-derived h9c2
8
expression cardiac
8
sarcolemmal katp
8
membrane fraction
8

Similar Publications

Background: Maslinic acid (MA), a pentacyclic triterpenoid compound derived from leaves and fruits of Olea europaea, bears multi-pharmacological properties. Our previous studies found that MA exerted a cardioprotective effect by modulating oxidative stress, inflammation, and apoptosis during myocardial ischemia-reperfusion injury (MIRI). Nevertheless, data regarding the anti-ferroptosis effects of MA on MI/RI remains unidentified.

View Article and Find Full Text PDF

G protein-coupled receptor 40 (GPR40) is gaining recognition as a potential therapeutic target for several metabolic disturbances, such as hyperglycemia and excessive inflammation. GPR40 is expressed in various tissues, including the heart; however, its specific roles in cardiomyocytes remain unknown. The objective of the present study was to investigate whether treatment with AM1638, a GPR40-full agonist, reduces palmitate-mediated cell damage in H9c2 rat cardiomyocytes.

View Article and Find Full Text PDF

Objectives: To deeply explore the mechanism of pachymic acid (PA) intervention in myocardial ischemia, providing new ideas and methods for the treatment of myocardial ischemia.

Methods: Predict the targets of PA for improving myocardial ischemia, and conduct functional enrichment analysis using databases, such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Reactome. To verify these findings, PPI network topology analysis and molecular docking were used to screen key targets and main mechanisms of action and further validated through in vitro experiments on the H9C2 cell line.

View Article and Find Full Text PDF

Long non-coding RNA XR008038 promotes the myocardial ischemia/reperfusion injury development through increasing the expressions of galectin-3.

Int J Cardiol

January 2025

Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:

Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.

View Article and Find Full Text PDF

Electrochemical impedance spectroscopy (EIS) serves as a non-invasive technique for assessing cell status, while mechanical stretching plays a pivotal role in stimulating cells to emulate their natural environment. Integrating these two domains enables the concurrent application of mechanical stimulation and EIS in a stretchable cell culture system. However, challenges arise from the difficulty in creating a durable and stable stretchable impedance electrode array.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!