Fluorogold or rhodamine-labelled latex beads were injected in the substantia nigra (SN) or the globus pallidus (GP) in order retrogradely to label striatal output neurons that project to the two target structures. Ten days later, striatal c-fos was induced by systemic administration of cocaine (five normal rats; 25 mg/kg cocaine i.p. 2 h before killing) or apomorphine (five unilaterally dopamine-denervated rats; 0.25 mg/kg apomorphine s. c. 2 h before killing), and detection of the Fos protein in the striatum was achieved by immunofluorescence. Sections through the caudate-putamen that displayed good labelling from both SN and GP were selected for a quantitative analysis: the number of retrogradely labelled cells that exhibited Fos immunoreactivity, as well as the total number of retrogradely labelled cells located within a grid (0.16 mm2 in size) were counted manually at 25 x magnification. Cocaine induced a proportionally higher c-fos expression in striato-nigral compared to striato-pallidal neurons, whereas apomorphine activated Fos almost exclusively in striato-nigral neurons. The present findings are consistent with the idea that striatal c-fos induction by dopaminergic agents is primarily mediated by an interaction with D1-receptors, which are thought to be selectively localized on neurons projecting to SN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.1992.tb00885.x | DOI Listing |
Am J Psychiatry
January 2025
Department of Neuroscience, Medical University of South Carolina, Charleston (Kuhn, Crow, Walterhouse, Chalhoub, Dereschewitz, Roberts, Kalivas); School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy (Cannella, Lunerti, Ciccocioppo); Interdisciplinary Ph.D. Program in Biostatistics (Gupta) and Department of Biomedical Informatics (Gupta, Allen, Chung), and Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, Ohio State University, Columbus (Gupta, Allen, Chung); Department of Internal Medicine, Wake Forest University, Winston-Salem, NC (Cockerham, Beeson, Solberg Woods); Department of Psychology, Jacksonville State University, Jacksonville, AL (Nall); Institute for Genomic Medicine, University of California San Diego, La Jolla (Palmer); School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland (Hardiman).
Objective: The behavioral and diagnostic heterogeneity within the opioid use disorder (OUD) diagnosis is not readily captured in current animal models, limiting the translational relevance of the mechanistic research that is conducted in experimental animals. The authors hypothesized that a nonlinear clustering of OUD-like behavioral traits would capture population heterogeneity and yield subpopulations of OUD vulnerable rats with distinct behavioral and neurocircuit profiles.
Methods: Over 900 male and female heterogeneous stock rats, a line capturing genetic and behavioral heterogeneity present in humans, were assessed for several measures of heroin use and rewarded and non-rewarded seeking behaviors.
Phytomedicine
January 2025
Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, PR China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, PR China. Electronic address:
Neurobiol Dis
January 2025
Danish Research Centre for Magnetic Resonance (DRCMR), Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Intratelencephalic neurons are a crucial class of cortical principal neurons that heavily innervate the striatum and cortical areas bilaterally. Their extensive cortico-cortical and cortico-striatal connectivity enables sensorimotor integration within the telencephalon, but their role in motor control remains poorly understood. Here, we used a chemogenetic approach to explore the role of intratelencephalic neurons in spontaneous locomotor activity.
View Article and Find Full Text PDFObjective: The behavioral and diagnostic heterogeneity within human opioid use disorder (OUD) diagnosis is not readily captured in current animal models, limiting translational relevance of the mechanistic research that is conducted in experimental animals. We hypothesize that a non-linear clustering of OUD-like behavioral traits will capture population heterogeneity and yield subpopulations of OUD vulnerable rats with distinct behavioral and neurocircuit profiles.
Methods: Over 900 male and female heterogeneous stock rats, a line capturing genetic and behavioral heterogeneity present in humans, were assessed for several measures of heroin use and rewarded and non-rewarded seeking behaviors.
Drugs of abuse activate defined neuronal ensembles in brain reward structures such as the nucleus accumbens (NAc), which are thought to promote the enduring synaptic, circuit, and behavioral consequences of drug exposure. While the molecular and cellular effects arising from experience with drugs like cocaine are increasingly well understood, the mechanisms that sculpt NAc ensemble participation are largely unknown. Here, we leveraged unbiased single-nucleus transcriptional profiling to identify expression of the secreted glycoprotein Reelin (encoded by the gene) as a marker of cocaine-activated neuronal ensembles within the rat NAc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!