Glutamate-glutamine cycling in the epileptic human hippocampus.

Epilepsia

Department of Neurology, Yale University, New Haven, Connecticut 06520-8018, USA.

Published: July 2002

Purpose: Several findings suggest that energy metabolism and the glutamate-glutamine cycle may be impaired in epilepsy. Positron emission tomography often shows interictal hypometabolism of the epileptogenic hippocampus. In vivo microdialysis studies show that seizure-associated glutamate release is doubled, and clearance is slowed. We hypothesized that the glutamate-glutamine cycle between neurons and glia may be decreased in the epileptic human hippocampus.

Methods: A 20% solution of 2-13C-glucose was infused before resection of the epileptogenic hippocampus. Blood glucose isotopic fractions were measured every 30 min. Blood and brain specimens were frozen quickly; perchloric acid extracts of the small metabolites were prepared and analyzed by proton and carbon magnetic resonance spectroscopy (MRS) at 11.75 Tesla.

Results: Standard histology showed 12 with hippocampal sclerosis and five with minimal neuron loss. The relative rates of glutamate-glutamine cycling with respect to glutamate synthesis were decreased in biopsies affected by hippocampal sclerosis (mean, 0.08; 95% confidence interval, 0.04-0.12) compared with those with minimal neuron loss (0.52; 95% CI, 0.30-0.75). Mean cellular glutamate concentrations were higher in minimal neuron loss (8.9 mM; 95% CI, 7.4-10.4) than hippocampal sclerosis (7.3 mM; 95% CI, 5.9-8.7). Cellular glutamine concentrations (mean, 2.8 mM; 95% CI, 2.4-3.2; n = 17) were the same in all groups.

Conclusions: The epileptogenic, gliotic human hippocampus appears to be characterized metabolically by slow rates of glutamate-glutamine cycling, decreased glutamine content, and a relative increase in glutamate content. We hypothesize that the low rate of glutamate-glutamine cycling that results from a failure of glial glutamate detoxification could account for slow glutamate clearance from synapses and continuing low-grade excitotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1528-1157.2002.38901.xDOI Listing

Publication Analysis

Top Keywords

glutamate-glutamine cycling
16
hippocampal sclerosis
12
minimal neuron
12
neuron loss
12
epileptic human
8
human hippocampus
8
glutamate-glutamine cycle
8
epileptogenic hippocampus
8
rates glutamate-glutamine
8
glutamate-glutamine
6

Similar Publications

Activation of glutamine synthetase (GS) as a new strategy for the treatment of major depressive disorder and other GS-related diseases.

Acta Pharmacol Sin

January 2025

Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.

Glutamine synthetase (GS) plays a crucial role in the homeostasis of the glutamate-glutamine cycle in the brain. Hypoactive GS causes depressive behaviors. Under chronic stress, GS has no change in expression, but its activity is decreased due to nitration of tyrosine (Tyr).

View Article and Find Full Text PDF

Hepatoencephalopathy (HE) is a liver disease that can lead to brain pathology and the impairment of human cognitive abilities. The objective assessment of HE disease severity is difficult due to the lack of reliable diagnostic markers. This paper examines the background to the emergence of HE markers and provides a brief overview of research results indicating the diagnostic value of potential markers isolated from a wide range of metabolites analyzed.

View Article and Find Full Text PDF

Challenges of Investigating Compartmentalized Brain Energy Metabolism Using Nuclear Magnetic Resonance Spectroscopy in vivo.

Neurochem Res

January 2025

Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.

Brain function requires continuous energy supply. Thus, unraveling brain metabolic regulation is critical not only for our basic understanding of overall brain function, but also for the cellular basis of functional neuroimaging techniques. While it is known that brain energy metabolism is exquisitely compartmentalized between astrocytes and neurons, the metabolic and neuro-energetic basis of brain activity is far from fully understood.

View Article and Find Full Text PDF

Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast.

Neurosci Lett

December 2024

School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:

Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.

View Article and Find Full Text PDF

Spatial stable isotope tracing metabolic imaging is a cutting-edge technique designed to investigate tissue-specific metabolic functions and heterogeneity. Traditional matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) techniques often struggle with low coverage of low-molecular-weight (LMW) metabolites, which are often crucial for spatial metabolic studies. To address this, we developed a high-coverage spatial isotope tracing metabolic method that incorporates optimized matrix selection, sample preparation protocols, and enhanced post-ionization (MALDI2) techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!